Iterative-Order-Reduction Substructuring Method for Dynamic Condensation of Finite Element Models

animprovediterativeorder-reductionmethodbasedonthestate-spacemodelisproposedfornonclassicallydamped systems by fully taking into account the effect of damping on the transformation matrix. By combining the original and improved iterative order-reduction schemes with the substructuring scheme, a new iterative order-reduction substructuring method is also proposed to overcome the problem of requiring more computational resources to constructthetransformationmatrixoflarge-scale finiteelementmodels.Theproposedmethodmaybeappliedtothe reduction problems of large-scale undamped and damped finite element models with limited computer storage and high computational efficiency. Two numerical examples are provided to demonstrate the effectiveness of the proposed method.

[1]  M. Friswell,et al.  Model reduction using dynamic and iterated IRS techniques , 1995 .

[2]  D. Rixen A dual Craig-Bampton method for dynamic substructuring , 2004 .

[3]  B. Irons,et al.  Inadequacy of nodal connections in a stiffness solution for plate bending , 1965 .

[4]  R. D. Henshell,et al.  Automatic masters for eigenvalue economization , 1974 .

[5]  Luis E. Suarez,et al.  Dynamic condensation method for structural eigenvalue analysis , 1992 .

[6]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[7]  Jeffrey W. Umland,et al.  SRTM on-orbit structural dynamics , 2001 .

[8]  M. Friswell,et al.  THE CONVERGENCE OF THE ITERATED IRS METHOD , 1998 .

[9]  V. N. Shah,et al.  Analytical selection of masters for the reduced eigenvalue problem , 1982 .

[10]  Z. Qu,et al.  Insight into the dynamic condensation technique of non-classically damped models , 2004 .

[11]  K. W. Matta,et al.  Selection of degrees of freedom for dynamic analysis , 1984 .

[12]  Mohammad A. Aminpour,et al.  A coupled analysis method for structures with independently modelled finite element subdomains , 1995 .

[13]  Luis E. Suarez,et al.  Dynamic Condensation Approach for Nonclassically Damped Structures , 1999 .

[14]  B. Irons Structural eigenvalue problems - elimination of unwanted variables , 1965 .

[15]  R. Lin,et al.  Improvement on the iterated IRS method for structural eigensolutions , 2004 .

[16]  R. Lin,et al.  A new iterative order reduction (IOR) method for eigensolutions of large structures , 2004 .

[17]  R. Panneer Selvam,et al.  Efficient method for dynamic condensation of nonclassically damped vibration systems , 2002 .

[18]  Maenghyo Cho,et al.  Improvement of reduction method combined with sub‐domain scheme in large‐scale problem , 2007 .

[19]  Z. Qu,et al.  MODEL CONDENSATION FOR NON-CLASSICALLY DAMPED SYSTEMS-PART II: ITERATIVE SCHEMES FOR DYNAMIC CONDENSATION , 2003 .

[20]  Kolja Elssel,et al.  An A Priori Bound for Automated Multilevel Substructuring , 2006, SIAM J. Matrix Anal. Appl..

[21]  Maenghyo Cho,et al.  Iterative method for dynamic condensation combined with substructuring scheme , 2008 .