Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity

[1]  D. Lozano‐Castelló,et al.  Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte , 2003 .

[2]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[3]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[4]  Yong‐Tae Kim,et al.  Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance: Balancing hydrophilicity and conductivity , 2006 .

[5]  Feng Wu,et al.  Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors , 2006 .

[6]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[7]  Chi-Chang Hu,et al.  Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors , 2005 .

[8]  Guoqing Zhou,et al.  A study of activated carbon nanotubes as electrochemical super capacitors electrode materials , 2002 .

[9]  Wen‐Cui Li,et al.  Cresol–formaldehyde based carbon aerogel as electrode material for electrochemical capacitor , 2006 .

[10]  Dolores Lozano-Castelló,et al.  ROLE OF SURFACE CHEMISTRY ON ELECTRIC DOUBLE LAYER CAPACITANCE OF CARBON MATERIALS , 2005 .

[11]  Yong Jung Kim,et al.  Structural features necessary to obtain a high specific capacitance in electric double layer capacitors , 2004 .

[12]  S. Pyun,et al.  Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors , 2006 .

[13]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[14]  Hui-Ming Cheng,et al.  Carbon nanotubes for clean energy applications , 2005 .

[15]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[16]  Chi-Chang Hu,et al.  Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors , 2007 .

[17]  A. B. Fuertes,et al.  Performance of templated mesoporous carbons in supercapacitors , 2007 .

[18]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[19]  François Béguin,et al.  Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes , 2006 .

[20]  D. Cazorla-Amorós,et al.  Enhanced capacitance of carbon nanotubes through chemical activation , 2002 .

[21]  Seong Chu Lim,et al.  Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes , 2001 .

[22]  Yongyao Xia,et al.  Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly , 2007 .

[23]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[24]  Bin Xu,et al.  Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors , 2007 .

[25]  Rüdiger Kötz,et al.  Capacitance limits of high surface area activated carbons for double layer capacitors , 2005 .

[26]  L. Qian,et al.  Effects of activation conditions on the electrochemical capacitance of activated carbon nanotubes , 2005 .

[27]  M. S. Dresselhaus,et al.  Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes , 2001 .

[28]  Feng Wu,et al.  Single‐walled Carbon Nanotubes as Electrode Materials for Supercapacitors , 2006 .

[29]  Min Liu,et al.  Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors , 2006 .

[30]  E. Frąckowiak,et al.  Effect of pore size distribution of coal-based activated carbons on double layer capacitance , 2005 .