Weak Limits of the Quantum Hydrodynamic Model

A numerical study of the dispersive limit of the quantum hydrodynamic equations for semiconductors is presented. The solution may develop high frequency oscillations when the scaled Planck constant is small. Numerical evidence is given of the fact that in such cases the solution does not converge to the solution of the formal limit equations.

[1]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[3]  Carl L. Gardner,et al.  The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..

[4]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[5]  Christian A. Ringhofer,et al.  Smooth Quantum Hydrodynamic Model Simulation of the Resonant Tunneling Diode , 1998, VLSI Design.

[6]  D. McLaughlin,et al.  Modulations of perturbed KdV wavetrains , 1984 .

[7]  Uri M. Ascher,et al.  A PHASE PLANE ANALYSIS OF TRANSONIC SOLUTIONS FOR THE HYDRODYNAMIC SEMICONDUCTOR MODEL , 1991 .

[8]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[9]  Gardner,et al.  Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.