Instabilities in diamond under high shear stress

We investigate, through first-principles calculations, lattice instabilities induced in diamond by the application of high shear stresses. For shear stresses as low as 95 GPa a lattice instability will occur, leading to graphitelike layered structures. This effect is highly anisotropic. The reversal of the direction of the applied shear forces may cause a change of 80 GPa in the shear stress value at which the instability develops. The same reversal also causes different bonds to be broken, resulting in a drastic change in the orientation of the resulting graphitelike structures. We also find that an additional compressive stress of 50 GPa along the (111) direction does not eliminate the shear-induced instability.