Phase evolution and enhanced piezoelectric, multiferroic, and magnetoelectric properties in Cr–Mn co-doped BiFeO3–BaTiO3 system

[1]  Jie Wu,et al.  Simultaneously enhanced piezoelectricity and curie temperature in BiFeO3-based high temperature piezoelectrics , 2021, Journal of the European Ceramic Society.

[2]  G. Wen,et al.  Grain size effect on piezoelectric performance in perovskite-based piezoceramics , 2020 .

[3]  R. Dwivedi,et al.  Coexistence of two ferroelectric phases and improved room-temperature multiferroic properties in the (0.70)BiFe1 − xCoxO3–(0.30)PbTiO3 system , 2020 .

[4]  P. Tong,et al.  Structural, piezoelectric, multiferroic and magnetoelectric properties of (1-x)BiFeO3-xBa1-ySryTiO3 solid solutions , 2020, Journal of Electroceramics.

[5]  R. Zuo,et al.  Superior Energy‐Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3‐BaTiO3‐NaNbO3 Lead‐Free Bulk Ferroelectrics , 2019, Advanced Energy Materials.

[6]  Jianguo Zhu,et al.  Recent development in lead-free perovskite piezoelectric bulk materials , 2018, Progress in Materials Science.

[7]  Hong Wang,et al.  Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics , 2018, Nano Energy.

[8]  Shantao Zhang,et al.  Crystal structure, impedance, and multiferroic property of SrZrO3 and MnO2 modified 0.725BiFeO3−0.275BaTiO3 ceramics , 2017 .

[9]  Joris Mercelis,et al.  History and Technology , 2017 .

[10]  Jianguo Zhu,et al.  Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures , 2016 .

[11]  A. Castro,et al.  A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity , 2016, Nature Communications.

[12]  R. Pirc,et al.  BaZr 0.5 Ti 0.5 O 3 : Lead-free relaxor ferroelectric or dipolar glass , 2016 .

[13]  Tae Kwon Song,et al.  High‐Performance Lead‐Free Piezoceramics with High Curie Temperatures , 2015, Advanced materials.

[14]  P. Stamenov,et al.  Designing switchable polarization and magnetization at room temperature in an oxide , 2015, Nature.

[15]  Qi Zhang,et al.  Giant Electric Energy Density in Epitaxial Lead‐Free Thin Films with Coexistence of Ferroelectrics and Antiferroelectrics , 2015 .

[16]  E. Ramana,et al.  Ferroelectric and magnetic properties of magnetoelectric (Na0.5Bi0.5)TiO3–BiFeO3 synthesized by acetic acid assisted sol–gel method , 2014 .

[17]  N. Chandra,et al.  Phase transformation, improved ferroelectric and magnetic properties of (1 − x) BiFeO3–xPb(Zr0.52Ti0.48)O3 solid solutions , 2014 .

[18]  Yurong Yang,et al.  Prediction of a novel magnetoelectric switching mechanism in multiferroics. , 2014, Physical review letters.

[19]  A. Senyshyn,et al.  Magnetic transitions and site-disordered induced weak ferromagnetism in (1-x)BiFeO3-xBaTiO3 , 2014 .

[20]  W. Xiaoli,et al.  Multiferroic and piezoelectric properties of 0.65BiFeO3–0.35BaTiO3 ceramic with pseudo-cubic symmetry , 2012 .

[21]  Qing Qing Wang,et al.  Improved Structure Stability and Multiferroic Characteristics in CaTiO3-Modified BiFeO3 Ceramics , 2012 .

[22]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[23]  J. Íñiguez,et al.  First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3-BiCoO3 multiferroic solid solutions. , 2011, Physical review letters.

[24]  A. Kholkin,et al.  Enhanced ferroelectric, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions , 2011 .

[25]  Nicola A. Spaldin,et al.  Multiferroics: Past, present, and future , 2010 .

[26]  L. Mitoseriu,et al.  Preparation and properties of (1 − x)BiFeO3–xBaTiO3 multiferroic ceramics , 2010 .

[27]  R. Katiyar,et al.  Raman spectroscopy of single-domain multiferroic BiFeO 3 , 2010 .

[28]  A. Mougin,et al.  Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. , 2009, Physical review letters.

[29]  John Wang,et al.  Multiferroic behaviour and orientation dependence of lead-free (1 − x)BiFeO3–x(Bi0.50Na0.50)TiO3 thin films , 2009 .

[30]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[31]  S. Fusil,et al.  Room-temperature coexistence of large electric polarization and magnetic order in Bi Fe O 3 single crystals , 2007, 0706.0404.

[32]  S. Or,et al.  Structural transformation and ferroelectric–paraelectric phase transition in Bi1−x Lax FeO3 (x = 0–0.25) multiferroic ceramics , 2007 .

[33]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[34]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[35]  Can Wang,et al.  Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect , 2006 .

[36]  Moon-Ho Jo,et al.  Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry , 2006 .

[37]  J. Li,et al.  Magnetocapacitance and Magnetoresistance Near Room Temperature in a Ferromagnetic Semiconductor: La2NiMnO6 , 2005 .

[38]  N. Spaldin,et al.  First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3 : Structure, polarization, and magnetic ordering temperature , 2005, cond-mat/0508362.

[39]  M. P. Singh,et al.  The single-phase multiferroic oxides: from bulk to thin film , 2005 .

[40]  Jouko Lahtinen,et al.  Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method , 2005 .

[41]  K. Hong,et al.  Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. , 2004, Physical review letters.

[42]  N. Spaldin,et al.  Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2004, cond-mat/0407003.

[43]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[44]  H. Chan,et al.  Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics , 2004 .

[45]  K. Hashimoto,et al.  A Ferroelectric Ferromagnet Composed of (PLZT)x(BiFeO3)1–x Solid Solution , 2001 .

[46]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[47]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[48]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[49]  Ueda,et al.  Ferromagnetism in LaFeO3-LaCrO3 superlattices , 1998, Science.

[50]  M. Rahaman Ceramic Processing and Sintering , 1995 .

[51]  Cross,et al.  Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution. , 1993, Physical review. B, Condensed matter.

[52]  M. Glinchuk,et al.  Dipole glass and ferroelectricity in random-site electric dipole systems , 1990 .

[53]  P. Fischer,et al.  Temperature dependence of the crystal and magnetic structures of BiFeO3 , 1980 .

[54]  Robert Gerson,et al.  Dielectric hysteresis in single crystal BiFeO3 , 1970 .