Motivations and history of some of my conjectures

Let G be a (directed) graph with vertex set X and let k be a positive integer. A purtiul k-coloring (S,, S2, . . . ,S,) is a family of k disjoint stable sets of G. A vertex which belongs to Si is said to be ‘of color i’, but some vertices may be uncolored. We say that a partial k-coloring of G saturates a subset A of X if the number of difSerent colors represented in A is exactly B,(A) = min{k; IA]}, i.e. the maximum possible. A partition of X is saturated if each of its classes is saturated. A puth p can denote either a sequence of distinct vertices (directed elementary path) or the subset of X defined by these vertices. Consider a partition M = {p1, p2, 1 of X into paths; if k is a positive integer, we write

[1]  B. Roy Nombre chromatique et plus longs chemins d'un graphe , 1967 .

[2]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[3]  J. A. Bondy,et al.  Progress in Graph Theory , 1984 .

[4]  O. Ore Theory of Graphs , 1962 .

[5]  Michael Saks A short proof of the existence of k-saturated partitions of partially ordered sets , 1979 .

[6]  Fathi Saleh,et al.  On greene's theorem for digraphs , 1994, J. Graph Theory.

[7]  Zsolt Tuza,et al.  On conjectures of Berge and Chvátal , 1994, Discret. Math..

[8]  Zoltán Füredi,et al.  The chromatic index of simple hypergraphs , 1986, Graphs Comb..

[9]  Claude Berge k-optimal Partitions of a Directed Graph , 1982, Eur. J. Comb..

[10]  Peter Horák A coloring problem related to the Erdös-Faber-Lovász conjecture , 1990, J. Comb. Theory, Ser. B.

[11]  C. Colbourn,et al.  The chromatic index of cyclic Steiner 2-designs , 1982 .

[12]  Ping Wang,et al.  Some results about the Chvátal conjecture , 1978, Discret. Math..

[13]  C. Berge On the Chromatic Index of a Linear Hypergraph and the Chvátal Conjecture , 1989 .

[14]  Aaron D. Wyner,et al.  The Zero Error Capacity of a Noisy Channel , 1993 .

[15]  Claude Berge,et al.  Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.

[16]  L. Lovász On chromatic number of finite set-systems , 1968 .

[17]  Daniel J. Kleitman,et al.  The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.

[18]  Peter Frankl,et al.  On the Trace of Finite Sets , 1983, J. Comb. Theory, Ser. A.

[19]  F. Sterboul,et al.  Sur une conjecture de V. Chvatal , 1974 .

[20]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[21]  A. J. Hoffman,et al.  PATH PARTITIONS AND PACKS OF ACYCLIC DIGRAPHS , 1985 .

[22]  S. Sridharan On the Berge's strong path partition conjecture , 1993, Discret. Math..

[23]  Neil Hindman,et al.  On a Conjecture of Erdös, Faber, and Lovász about n-Colorings , 1981, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[24]  Eugene L. Lawler,et al.  Edge coloring of hypergraphs and a conjecture of ErdÖs, Faber, Lovász , 1988, Comb..

[25]  G. Sposito,et al.  Graph theory and theoretical physics , 1969 .

[26]  C. Berge Path Partitions in Directed Graphs , 1983 .

[27]  Vašek Chvátal,et al.  Intersecting families of edges in hypergraphs having the hereditary property , 1974 .

[28]  Alan J. Hoffman Extending Greene's Theorem to Directed Graphs , 1983, J. Comb. Theory, Ser. A.

[29]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[30]  Henry Meyniel,et al.  On the perfect graph conjecture , 1976, Discret. Math..

[31]  Nathan Linial Extending the Greene-Kleitman Theorem to Directed Graphs , 1981, J. Comb. Theory, Ser. A.

[32]  Peter Stein Chvátal's conjecture and point-intersections , 1983, Discret. Math..

[33]  Kathie Cameron On k-Optimum Dipath Partitions and Partial k-Colourings of Acyclic Digraphs , 1986, Eur. J. Comb..

[34]  On two conjectures to generalize Vizing's Theorem , 1991 .