Passive network localization via UWB wireless sensor radars: The impact of TOA estimation

Passive network localization via wireless sensor radars (WSRs) is rising interest for applications in civilian, commercial, and military sectors. A clear understanding on how impairments and system parameters affect detection and localization accuracy is fundamental for the WSR network design. We introduce a mathematical framework for the analysis of WSR network which allows to consider different scenarios, network topologies, and system configurations. We focus on the effects of ultra-wide bandwidth (UWB) time-of-arrival estimation on the localization accuracy. We present results for a case study of UWB monostatic radars network with application in logistics.

[1]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part II: Cooperative Networks , 2010, IEEE Transactions on Information Theory.

[2]  Moe Z. Win,et al.  Network localization and navigation via cooperation , 2011, IEEE Communications Magazine.

[3]  Andrea Giorgetti,et al.  Localization Capability of Cooperative Anti-Intruder Radar Systems , 2008, EURASIP J. Adv. Signal Process..

[4]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[5]  Moe Z. Win,et al.  On the robustness of ultra-wide bandwidth signals in dense multipath environments , 1998, IEEE Communications Letters.

[6]  Hervé Jégou,et al.  Deleted DOI: Error Recovery Properties and Soft Decoding of Quasi-Arithmetic Codes , 2008 .

[7]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part I: A General Framework , 2010, IEEE Transactions on Information Theory.

[8]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[9]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[10]  M. Aftanas,et al.  An Analysis of 2D Target Positioning Accuracy for M-sequence UWB Radar System under Ideal Conditions , 2007, 2007 17th International Conference Radioelektronika.

[11]  Andreas F. Molisch,et al.  Ultrawideband propagation channels-theory, measurement, and modeling , 2005, IEEE Transactions on Vehicular Technology.

[12]  Moe Z. Win,et al.  Cooperative Localization in Wireless Networks , 2009, Proceedings of the IEEE.

[13]  Moe Z. Win,et al.  On the energy capture of ultrawide bandwidth signals in dense multipath environments , 1998, IEEE Communications Letters.

[14]  R.S. Blum,et al.  Target localization techniques and tools for MIMO radar , 2008, 2008 IEEE Radar Conference.

[15]  Moe Z. Win,et al.  The Effect of Cooperation on UWB-Based Positioning Systems Using Experimental Data , 2008, EURASIP J. Adv. Signal Process..

[16]  Kristine L. Bell,et al.  Bayesian Cramer-Rao bounds for multistatic radar , 2006, 2006 International Waveform Diversity & Design Conference.

[17]  Moe Z. Win,et al.  Bit error outage for diversity reception in shadowing environment , 2003, IEEE Communications Letters.

[18]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[19]  Moe Z. Win,et al.  Ranging With Ultrawide Bandwidth Signals in Multipath Environments , 2009, Proceedings of the IEEE.