Thermoelectric microscopy of magnetic skyrmions

The magnetic skyrmion is a nanoscale topological object characterized by the winding of magnetic moments, appearing in magnetic materials with broken inversion symmetry. Because of its low current threshold for driving the skyrmion motion, they have been intensely studied toward novel storage applications by using electron-beam, X-ray, and visible light microscopies. Here, we demonstrate another imaging method for skyrmions by using spin-caloritronic phenomena, that is, the spin Seebeck and anomalous Nernst effects, as a probe of magnetic texture. We scanned a focused heating spot on a Hall-cross shaped MgO/CoFeB/Ta/W multilayer film and mapped the magnitude as well as the direction of the resultant thermoelectric current due to the spin-caloritronic phenomena. Our experimental and calculation reveal that the characteristic patterns in the thermoelectric signal distribution reflect the skyrmions’ magnetic texture. The thermoelectric microscopy will be a complementary and useful imaging technique for the development of skyrmion devices owing to the unique symmetry of the spin-caloritronic phenomena.

[1]  A. Ashtekar,et al.  Overview and Outlook , 1994 .

[2]  D. Cahill,et al.  Thermal Conductance of metal-metal interfaces , 2005 .

[3]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[4]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[5]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[6]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[7]  S. Maekawa,et al.  Observation of longitudinal spin-Seebeck effect in magnetic insulators , 2010 .

[8]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[9]  B. Wees,et al.  Thermally driven spin injection from a ferromagnet into a non-magnetic metal , 2010, 1004.1566.

[10]  E. Saitoh,et al.  Local Spin-Seebeck Effect Enabling Two-Dimensional Position Sensing , 2011 .

[11]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[12]  H. Kawamura,et al.  Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.

[13]  A. Thomas,et al.  Local charge and spin currents in magnetothermal landscapes. , 2011, Physical review letters.

[14]  T. Matsuda,et al.  Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. , 2012, Nano letters.

[15]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[16]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[17]  Y. Tokura,et al.  Magnetic stripes and skyrmions with helicity reversals , 2012, Proceedings of the National Academy of Sciences.

[18]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[19]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[20]  Y. Tokura,et al.  Topological Nernst effect in a three-dimensional skyrmion-lattice phase , 2013 .

[21]  T. Kikkawa,et al.  Longitudinal spin Seebeck effect free from the proximity Nernst effect. , 2012, Physical review letters.

[22]  S. Maekawa,et al.  Separation of longitudinal spin Seebeck effect from anomalous Nernst effect: Determination of origin of transverse thermoelectric voltage in metal/insulator junctions , 2013 .

[23]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[24]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[25]  Dong Hun Kim,et al.  Determination of the origin of the spin Seebeck effect - bulk vs. interface effects , 2013, 1306.0784.

[26]  N. Nagaosa,et al.  Creation of skyrmions and antiskyrmions by local heating , 2014, Nature Communications.

[27]  T. Miyazaki,et al.  Material dependence of anomalous Nernst effect in perpendicularly magnetized ordered-alloy thin films , 2015 .

[28]  Yan Zhou,et al.  Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack , 2015, Scientific Reports.

[29]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[30]  Sung-chul Shin,et al.  Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers , 2015, Scientific Reports.

[31]  Dong Hun Kim,et al.  Length Scale of the Spin Seebeck Effect. , 2013, Physical review letters.

[32]  A. N’Diaye,et al.  Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .

[33]  J. Sinova,et al.  Spin Hall effects , 2015 .

[34]  Michael D. Schneider,et al.  Dynamics and inertia of skyrmionic spin structures , 2015, Nature Physics.

[35]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[36]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[37]  Shinichi Yorozu,et al.  Thermoelectric Generation Based on Spin Seebeck Effects , 2016, Proceedings of the IEEE.

[38]  Yan Zhou,et al.  Skyrmion-Electronics: An Overview and Outlook , 2016, Proceedings of the IEEE.

[39]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[40]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[41]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[42]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[43]  E. Saitoh,et al.  Concomitant enhancement of the longitudinal spin Seebeck effect and the thermal conductivity in a Pt/YIG/Pt system at low temperatures , 2017 .

[44]  D. Ralph,et al.  Imaging Magnetization Structure and Dynamics in Ultrathin Y 3 Fe 5 O 12 /Pt Bilayers with High Sensitivity Using the Time-Resolved Longitudinal Spin Seebeck Effect , 2016, 1612.07610.

[45]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[46]  G. Fuchs,et al.  Near-field coupling of gold plasmonic antennas for sub-100 nm magneto-thermal microscopy , 2017, 1705.01911.

[47]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[48]  Y. Motome,et al.  Zero-Field Skyrmions with a High Topological Number in Itinerant Magnets. , 2017, Physical review letters.

[49]  Hyunsoo Yang,et al.  Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy , 2017, Nature Communications.

[50]  Xing Chen,et al.  Complementary Skyrmion Racetrack Memory Enables Voltage-Controlled Local Data Update Functionality , 2018, IEEE Transactions on Electron Devices.

[51]  A. Fert,et al.  Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature , 2018, Nature Nanotechnology.

[52]  Precise Determination of the Temperature Gradients in Laser-irradiated Ultrathin Magnetic Layers for the Analysis of Thermal Spin Current , 2018, Scientific Reports.

[53]  Y. Tokura,et al.  Transformation between meron and skyrmion topological spin textures in a chiral magnet , 2018, Nature.

[54]  E. Linfield,et al.  Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs , 2017, Nature Nanotechnology.

[55]  J. Wunderlich,et al.  Near-field magneto-caloritronic nanoscopy on ferromagnetic nanostructures , 2018, AIP Advances.

[56]  E. Saitoh,et al.  Thermographic measurements of spin-current-induced temperature modulation in metallic bilayers , 2018, Physical Review B.

[57]  Y. Bando,et al.  Visualizing nanoscale heat pathways , 2018, Nano Energy.

[58]  Y. Nakatani,et al.  Voltage-controlled magnetic skyrmions in magnetic tunnel junctions , 2019, Applied Physics Express.