Manipulation and simulations of thermal field profiles in laser heat-mode lithography

Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.

[1]  Hongjie Dai,et al.  A New Scanning Probe Lithography Scheme with a Novel Metal Resist , 2002 .

[2]  Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography , 2012 .

[3]  I. Tittonen,et al.  Focused ion beam high resolution grayscale lithography for silicon-based nanostructures , 2014 .

[4]  P. R. West,et al.  All-dielectric Subwavelength Metasurface Focusing Lens References and Links , 2022 .

[5]  Fuxi Gan,et al.  Temperature dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials , 2009 .

[6]  W. Blau,et al.  Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays , 2017 .

[7]  Yongyou Geng,et al.  New calix[4]arene derivatives as maskless and development-free laser thermal lithography materials for fabricating micro/nano-patterns , 2013 .

[8]  Jingsong Wei,et al.  Optical nonlinear absorption characteristics of AgInSbTe phase change thin films , 2009 .

[9]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[10]  Adhesion effect of interface layers on pattern fabrication with GeSbTe as laser thermal lithography film , 2013 .

[11]  Yongchun Lu,et al.  Fabrication of periodic metal nanowires with microscale mold by nanoimprint lithography. , 2011, ACS applied materials & interfaces.

[12]  Yiqun Wu,et al.  High-speed maskless nanolithography with visible light based on photothermal localization , 2017, Scientific Reports.

[13]  Versatile nanosphere lithography technique combining multiple-exposure nanosphere lens lithography and nanosphere template lithography , 2017 .

[14]  Shinji Okazaki,et al.  Pushing the limits of lithography , 2000, Nature.

[15]  Eric Pop,et al.  Phase change materials and phase change memory , 2014 .

[16]  Tsun Ren Jeng,et al.  Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser , 2009, IEEE Transactions on Magnetics.

[17]  H. Trieu,et al.  Photonic integrated circuit components based on amorphous silicon-on-insulator technology , 2016 .

[18]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[19]  Shinji Okazaki,et al.  High resolution optical lithography or high throughput electron beam lithography , 2015 .

[20]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[21]  Luping Shi,et al.  Thermal Lithography for 100-nm Dimensions Using a Nano-Heat Spot of a Visible Laser Beam : Instrumentation, Measurement, and Fabrication Technology , 2002 .

[22]  Heon Lee,et al.  Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography , 2011 .

[23]  A. Knoll,et al.  Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. , 2013, Nano letters.

[24]  Steve Madden,et al.  Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. , 2010, Optics express.

[25]  Image lithography in telluride suboxide thin film through controlling “virtual” bandgap , 2017 .

[26]  J. Tominaga,et al.  Thermal lithography for 0.1 μm pattern fabrication , 2002 .

[27]  Hiroshi Kawai,et al.  405 nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material , 2009 .

[28]  Nikolay I. Zheludev,et al.  1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage , 2014 .

[29]  T R Ravindran,et al.  Structural study on amorphous and crystalline state of phase change material , 2011 .

[30]  Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium , 2011 .

[31]  Yang Wang,et al.  Manipulation of heat-diffusion channel in laser thermal lithography. , 2014, Optics express.

[32]  Minh Thanh Do,et al.  Direct laser writing of polymeric nanostructures via optically induced local thermal effect , 2016 .

[33]  Donyau Chiang,et al.  Deep Dry Etching Patterned Silicon Using GeSbSnOx Thermal Lithography Photoresist , 2011, IEEE Transactions on Magnetics.

[34]  Andrew A. Bettiol,et al.  ION BEAM LITHOGRAPHY AND NANOFABRICATION: A REVIEW , 2005 .

[35]  Heon Lee,et al.  Fabrication of nano-scale phase change materials using nanoimprint lithography and reactive ion etching process , 2010 .

[36]  Dam Thuy Trang Nguyen,et al.  One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect , 2016 .

[37]  Shinya Abe,et al.  TeOx-based film for heat-mode inorganic photoresist mastering , 2005 .

[38]  Jingsong Wei,et al.  A study on one-step laser nanopatterning onto copper-hydrazone-complex thin films and its mechanism. , 2017, Physical chemistry chemical physics : PCCP.

[39]  Juntao Li,et al.  Efficient Silicon Metasurfaces for Visible Light , 2016 .

[40]  Christophe Ballif,et al.  UV‐nano‐imprint lithography technique for the replication of back reflectors for n‐i‐p thin film silicon solar cells , 2011 .

[41]  E. Riedo,et al.  Advanced scanning probe lithography. , 2014, Nature nanotechnology.

[42]  Zhiyuan Li,et al.  Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials , 2016 .

[43]  Jingsong Wei,et al.  Enhancement Effect of Patterning Resolution Induced by an Aluminum Thermal Conduction Layer with AgInSbTe as a Laser Thermal Lithography Film , 2012 .

[44]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.