An efficient numerical method for preconditioned saddle point problems

In this paper, we consider the solution of linear systems of saddle point type by a preconditioned numerical method. We first transform the original linear system into two sub-systems with small size by a preconditioning strategy, then employ the conjugate gradient (CG) method to solve the linear system with a SPD coefficient matrix, and a splitting iteration method to solve the other sub-system, respectively. Numerical experiments show that the new method can achieve faster convergence than several effective preconditioners published in the recent literature in terms of total runtime and iteration steps.