An efficient numerical method for preconditioned saddle point problems
暂无分享,去创建一个
[1] Jun Zou,et al. An Iterative Method with Variable Relaxation Parameters for Saddle-Point Problems , 2001, SIAM J. Matrix Anal. Appl..
[2] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[3] Gene H. Golub,et al. Matrix computations , 1983 .
[4] Zhi-Hao Cao. Fast uzawa algorithm for generalized saddle point problems , 2003 .
[5] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[6] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[7] Zeng-Qi Wang,et al. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .
[8] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..
[9] Z. Bai,et al. Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .
[10] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.