Innate immune responses to Pseudomonas aeruginosa infection.

[1]  S. Lancel,et al.  Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia* , 2011, Critical care medicine.

[2]  B. Tümmler,et al.  Lung function and inflammation during murine Pseudomonas aeruginosa airway infection. , 2011, Immunobiology.

[3]  R. Homer,et al.  Airway Epithelial MyD88 Restores Control of Pseudomonas aeruginosa Murine Infection via an IL-1–Dependent Pathway , 2011, The Journal of Immunology.

[4]  C. Colton,et al.  Nitric oxide and redox mechanisms in the immune response , 2011, Journal of leukocyte biology.

[5]  L. Touqui,et al.  Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection. , 2011, The Journal of infectious diseases.

[6]  G. Drusano,et al.  Saturability of Granulocyte Kill of Pseudomonas aeruginosa in a Murine Model of Pneumonia , 2011, Antimicrobial Agents and Chemotherapy.

[7]  E. Gulbins,et al.  Kinase suppressor of Ras-1 protects against pulmonary Pseudomonas aeruginosa infections , 2011, Nature Medicine.

[8]  Jialin Liu,et al.  Early production of IL-17 protects against acute pulmonary Pseudomonas aeruginosa infection in mice. , 2011, FEMS immunology and medical microbiology.

[9]  Y. Park,et al.  TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection. , 2011, American journal of respiratory cell and molecular biology.

[10]  D. Hassett,et al.  The Pseudomonas aeruginosa flagellum confers resistance to pulmonary surfactant protein‐A by impacting the production of exoproteases through quorum‐sensing , 2011, Molecular microbiology.

[11]  S. McColley,et al.  Clinical Significance of Microbial Infection and Adaptation in Cystic Fibrosis , 2011, Clinical Microbiology Reviews.

[12]  A. Filloux,et al.  Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. , 2010, International journal of medical microbiology : IJMM.

[13]  Douglas R. McDonald,et al.  Clinical Features and Outcome of Patients With IRAK-4 and MyD88 Deficiency , 2010, Medicine.

[14]  B. Kazmierczak,et al.  In Vivo Discrimination of Type 3 Secretion System-Positive and -Negative Pseudomonas aeruginosa via a Caspase-1-Dependent Pathway , 2010, Infection and Immunity.

[15]  K. Sullivan,et al.  Myeloid differentiation primary response gene 88 (MyD88) deficiency in a large kindred. , 2010, The Journal of allergy and clinical immunology.

[16]  T. Murray,et al.  Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. , 2010, Journal of medical microbiology.

[17]  S. Richter,et al.  Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth , 2010, Science Translational Medicine.

[18]  Richard Bonneau,et al.  Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome , 2010, Proceedings of the National Academy of Sciences.

[19]  A. Hauser,et al.  Pseudomonas aeruginosa Cytotoxin ExoU Is Injected into Phagocytic Cells during Acute Pneumonia , 2010, Infection and Immunity.

[20]  C. Coopersmith,et al.  Characterization and Modulation of the Immunosuppressive Phase of Sepsis , 2010, Infection and Immunity.

[21]  J. Tschopp,et al.  The Role of Potassium in Inflammasome Activation by Bacteria* , 2010, The Journal of Biological Chemistry.

[22]  D. Hassett,et al.  Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. , 2009, The American journal of pathology.

[23]  L. Touqui,et al.  Pseudomonas aeruginosa LPS or Flagellin Are Sufficient to Activate TLR-Dependent Signaling in Murine Alveolar Macrophages and Airway Epithelial Cells , 2009, PloS one.

[24]  G. Pier,et al.  Inescapable Need for Neutrophils as Mediators of Cellular Innate Immunity to Acute Pseudomonas aeruginosa Pneumonia , 2009, Infection and Immunity.

[25]  A. Hauser The type III secretion system of Pseudomonas aeruginosa: infection by injection , 2009, Nature Reviews Microbiology.

[26]  T. Standiford,et al.  Effect of IL-10 on neutrophil recruitment and survival after Pseudomonas aeruginosa challenge. , 2009, American journal of respiratory cell and molecular biology.

[27]  T. Walsh,et al.  C5a mediates peripheral blood neutrophil dysfunction in critically ill patients. , 2009, American journal of respiratory and critical care medicine.

[28]  G. Pier,et al.  Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[29]  Shaoguang Li,et al.  Alveolar Epithelial Type II Cells Activate Alveolar Macrophages and Mitigate P. Aeruginosa Infection , 2009, PloS one.

[30]  T. Betsuyaku,et al.  Epilysin (MMP-28) Restrains Early Macrophage Recruitment in Pseudomonas aeruginosa Pneumonia1 , 2009, The Journal of Immunology.

[31]  G. Núñez,et al.  The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis , 2009, Nature Immunology.

[32]  Mauricio Valencia,et al.  Ventilator-associated pneumonia , 2009, Current opinion in critical care.

[33]  J. Chiche,et al.  Dendritic Cells Modulate Lung Response to Pseudomonas aeruginosa in a Murine Model of Sepsis-Induced Immune Dysfunction1 , 2008, The Journal of Immunology.

[34]  D. Hassett,et al.  NKG2D Is Critical for NK Cell Activation in Host Defense against Pseudomonas aeruginosa Respiratory Infection1 , 2008, The Journal of Immunology.

[35]  S. Achilefu,et al.  Neutrophil Elastase Mediates Innate Host Protection against Pseudomonas aeruginosa1 , 2008, The Journal of Immunology.

[36]  S. Lynch,et al.  Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. , 2008, American journal of respiratory and critical care medicine.

[37]  R. Ramphal,et al.  Control of Pseudomonas aeruginosa in the Lung Requires the Recognition of Either Lipopolysaccharide or Flagellin1 , 2008, The Journal of Immunology.

[38]  C. Gerard,et al.  FcγRIII Is Protective against Pseudomonas aeruginosa Pneumonia , 2008 .

[39]  D. Golenbock,et al.  MUC1 mucin is a negative regulator of toll-like receptor signaling. , 2008, American journal of respiratory cell and molecular biology.

[40]  G. Taylor,et al.  Subversion of a Lysosomal Pathway Regulating Neutrophil Apoptosis by a Major Bacterial Toxin, Pyocyanin1 , 2008, The Journal of Immunology.

[41]  A. Aderem,et al.  Pseudomonas aeruginosa activates caspase 1 through Ipaf , 2008, Proceedings of the National Academy of Sciences.

[42]  G. Downey,et al.  Role of PAR2 in murine pulmonary pseudomonal infection. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[43]  F. Sutterwala,et al.  Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome , 2007, The Journal of experimental medicine.

[44]  A. Wullaert,et al.  The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1β maturation , 2007, Journal of cellular and molecular medicine.

[45]  S. Musunuri,et al.  Pseudomonas aeruginosa Induces Localized Immunosuppression during Pneumonia , 2007, Infection and Immunity.

[46]  Sun-Mi Park,et al.  Serine Protease Inhibitor 6-Deficient Mice Have Increased Neutrophil Immunity to Pseudomonas aeruginosa1 , 2007, The Journal of Immunology.

[47]  G. Priebe,et al.  The neutrophil serine protease inhibitor serpinb1 preserves lung defense functions in Pseudomonas aeruginosa infection , 2007, The Journal of experimental medicine.

[48]  A. Shiratsuchi,et al.  Participation of nitric oxide reductase in survival of Pseudomonas aeruginosa in LPS-activated macrophages. , 2007, Biochemical and biophysical research communications.

[49]  R. Ramphal,et al.  Genetic mechanisms involved in the repression of flagellar assembly by Pseudomonas aeruginosa in human mucus , 2007, Molecular microbiology.

[50]  M. Kaku,et al.  NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa. , 2006, Microbes and infection.

[51]  R. Flavell,et al.  Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria , 2006, Proceedings of the National Academy of Sciences.

[52]  J. Casanova,et al.  Mendelian traits that confer predisposition or resistance to specific infections in humans. , 2006, Current opinion in immunology.

[53]  Alan Aderem,et al.  Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf , 2006, Nature Immunology.

[54]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Yi Chen,et al.  The NKG2D-Activating Receptor Mediates Pulmonary Clearance of Pseudomonas aeruginosa , 2006, Infection and Immunity.

[56]  J. Christman,et al.  Targeted Immunomodulation of the NF-κB Pathway in Airway Epithelium Impacts Host Defense against Pseudomonas aeruginosa1 , 2006, The Journal of Immunology.

[57]  J. Wiener-Kronish,et al.  Surfactant proteins A and D enhance pulmonary clearance of Pseudomonas aeruginosa. , 2006, American journal of respiratory cell and molecular biology.

[58]  Jonathan R Edwards,et al.  Overview of nosocomial infections caused by gram-negative bacilli. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[59]  H. D. Liggitt,et al.  An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia. , 2005, American journal of respiratory cell and molecular biology.

[60]  Pradeep K. Singh,et al.  Cystic Fibrosis Sputum Supports Growth and Cues Key Aspects of Pseudomonas aeruginosa Physiology , 2005, Journal of bacteriology.

[61]  Daniel G. Lee,et al.  Pyocyanin Production by Pseudomonas aeruginosa Induces Neutrophil Apoptosis and Impairs Neutrophil-Mediated Host Defenses In Vivo1 , 2005, The Journal of Immunology.

[62]  Vincent T. Lee,et al.  Activities of Pseudomonas aeruginosa Effectors Secreted by the Type III Secretion System In Vitro and during Infection , 2005, Infection and Immunity.

[63]  J. Mekalanos,et al.  Role of the Type III Secreted Exoenzymes S, T, and Y in Systemic Spread of Pseudomonas aeruginosa PAO1 In Vivo , 2005, Infection and Immunity.

[64]  J. Wright,et al.  Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. , 2005, American journal of physiology. Lung cellular and molecular physiology.

[65]  T. Shanley,et al.  Immunoregulatory effects of regulated, lung-targeted expression of IL-10 in vivo. , 2005, American journal of physiology. Lung cellular and molecular physiology.

[66]  A. Hauser,et al.  Relative Contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to Virulence in the Lung , 2004, Infection and Immunity.

[67]  J. Alcorn,et al.  Degradation of Pulmonary Surfactant Protein D by Pseudomonas aeruginosa Elastase Abrogates Innate Immune Function* , 2004, Journal of Biological Chemistry.

[68]  D. Hassett,et al.  Pseudomonas aeruginosa Pyocyanin Is Critical for Lung Infection in Mice , 2004, Infection and Immunity.

[69]  R. Wetsel,et al.  The Alternative Activation Pathway and Complement Component C3 Are Critical for a Protective Immune Response against Pseudomonas aeruginosa in a Murine Model of Pneumonia , 2004, Infection and Immunity.

[70]  S. Lory,et al.  Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  H. D. Liggitt,et al.  Cutting Edge: Myeloid Differentiation Factor 88 Is Essential for Pulmonary Host Defense against Pseudomonas aeruginosa but Not Staphylococcus aureus1 , 2004, The Journal of Immunology.

[72]  N. Shime,et al.  TLR4 signaling is essential for survival in acute lung injury induced by virulent Pseudomonas aeruginosa secreting type III secretory toxins , 2004, Respiratory research.

[73]  N. Mukaida,et al.  Essential Contribution of Monocyte Chemoattractant Protein-1/C-C Chemokine Ligand-2 to Resolution and Repair Processes in Acute Bacterial Pneumonia , 2004, The Journal of Immunology.

[74]  Arthur S Slutsky,et al.  Modulation of bacterial growth by tumor necrosis factor-alpha in vitro and in vivo. , 2003, American journal of respiratory and critical care medicine.

[75]  Samuel I. Miller,et al.  Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. , 2003, Journal of endotoxin research.

[76]  T. Standiford,et al.  Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia. , 2003, American journal of respiratory cell and molecular biology.

[77]  J. Coburn,et al.  Characterization of Pseudomonas aeruginosa Exoenzyme S as a Bifunctional Enzyme in J774A.1 Macrophages , 2003, Infection and Immunity.

[78]  J. Glickman,et al.  CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung , 2002, Nature Medicine.

[79]  M. Konstan,et al.  Prolonged inflammatory response to acute Pseudomonas challenge in interleukin-10 knockout mice. , 2002, American journal of respiratory and critical care medicine.

[80]  J. Rello,et al.  Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. , 2002, Critical care medicine.

[81]  T. van der Poll,et al.  Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. , 2002, American journal of physiology. Lung cellular and molecular physiology.

[82]  N. Mukaida,et al.  Dexamethasone impairs pulmonary defence against Pseudomonas aeruginosa through suppressing iNOS gene expression and peroxynitrite production in mice , 2001, Clinical and experimental immunology.

[83]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[84]  S. Deventer,et al.  Impairment of host defence by exotoxin A in Pseudomonas aeruginosa pneumonia in mice. , 2001, Journal of medical microbiology.

[85]  R. Savel,et al.  Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. , 2001, The Journal of infectious diseases.

[86]  A. Pollard,et al.  Nonopsonic phagocytosis of Pseudomonas aeruginoas: insights from an infant with leukocyte adhesion deficiency. , 2001, The Pediatric infectious disease journal.

[87]  T. Standiford,et al.  Intrapulmonary TNF Gene Therapy Reverses Sepsis-Induced Suppression of Lung Antibacterial Host Defense1 , 2000, The Journal of Immunology.

[88]  J. Engel,et al.  The Arginine Finger Domain of ExoT Contributes to Actin Cytoskeleton Disruption and Inhibition of Internalization ofPseudomonas aeruginosa by Epithelial Cells and Macrophages , 2000, Infection and Immunity.

[89]  Matthew R. Parsek,et al.  Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms , 2000, Nature.

[90]  T. Standiford,et al.  Urokinase Receptor-Deficient Mice Have Impaired Neutrophil Recruitment in Response to Pulmonary Pseudomonas aeruginosa Infection1 , 2000, The Journal of Immunology.

[91]  D. Speert,et al.  Role of Pulmonary Alveolar Macrophages in Defense of the Lung against Pseudomonas aeruginosa , 2000, Infection and Immunity.

[92]  T. Standiford,et al.  CXC Chemokine Receptor CXCR2 Is Essential for Protective Innate Host Response in Murine Pseudomonas aeruginosaPneumonia , 2000, Infection and Immunity.

[93]  K. Webert,et al.  Effects of inhaled nitric oxide in a rat model of Pseudomonas aeruginosa pneumonia , 2000, Critical care medicine.

[94]  W. Kisiel,et al.  Inhibition of neutrophil elastase by recombinant human proteinase inhibitor 9. , 1999, Biochimica et biophysica acta.

[95]  M. Scott,et al.  Effects of CD18 deficiency on the emigration of murine neutrophils during pneumonia. , 1999, Journal of immunology.

[96]  E. Chi,et al.  Role of the type 1 TNF receptor in lung inflammation after inhalation of endotoxin or Pseudomonas aeruginosa. , 1999, American journal of physiology. Lung cellular and molecular physiology.

[97]  T. Standiford,et al.  IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. , 1999, Journal of immunology.

[98]  K. Kooguchi,et al.  Role of Alveolar Macrophages in Initiation and Regulation of Inflammation in Pseudomonas aeruginosaPneumonia , 1998, Infection and Immunity.

[99]  J. Engel,et al.  PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence , 1998, Molecular microbiology.

[100]  D. Corry,et al.  IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. , 1997, Journal of immunology.

[101]  Lei Zhu,et al.  ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury , 1997, Molecular microbiology.

[102]  A. Beaudet,et al.  The roles of CD11/CD18 and ICAM-1 in acute Pseudomonas aeruginosa-induced pneumonia in mice. , 1996, Journal of immunology.

[103]  U. Höpken,et al.  The C5a chemoattractant receptor mediates mucosal defence to infection , 1996, Nature.

[104]  A. Kumar,et al.  IL-10 production is enhanced in human T cells by IL-12 and IL-6 and in monocytes by tumor necrosis factor-alpha. , 1996, Journal of immunology.

[105]  J. Pittet,et al.  Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections. , 1996, The American journal of physiology.

[106]  D. Radzioch,et al.  Role of tumor necrosis factor alpha in innate resistance to mouse pulmonary infection with Pseudomonas aeruginosa , 1995, Infection and immunity.

[107]  B. Beutler,et al.  Adenovirus-mediated blockade of tumor necrosis factor in mice protects against endotoxic shock yet impairs pulmonary host defense. , 1995, The Journal of infectious diseases.

[108]  R. Kamen,et al.  Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock , 1995, Cell.

[109]  A. Cripps,et al.  Pulmonary immunity to Pseudomonas aeruginosa in intestinally immunized rats roles of alveolar macrophages, tumor necrosis factor alpha, and interleukin-1 alpha , 1994, Infection and immunity.

[110]  R. Strauss,et al.  Infections in patients with neutropenia. , 1977, American journal of diseases of children.

[111]  D. Prows,et al.  References Subscriptions Permissions Email Alerts Mice Macrophage Dysfunction and Susceptibility to Pulmonary Pseudomonas aeruginosa Infection in Surfactant Protein C-Deficient , 2013 .

[112]  G. Bodey The changing face of febrile neutropenia-from monotherapy to moulds to mucositis. Fever and neutropenia: the early years. , 2009, The Journal of antimicrobial chemotherapy.

[113]  H. D. Liggitt,et al.  Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. , 2007, American journal of physiology. Lung cellular and molecular physiology.

[114]  Gabriel Núñez,et al.  Frontline : Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation , 2007 .

[115]  R. Gaynes,et al.  NATIONAL NOSOCOMIAL INFECTIONS SURVEILLANCE S. OVERVIEW OF NOSOCOMIAL INFECTIONS CAUSED BY GRAM-NEGATIVE BACILLI , 2005 .

[116]  J. Sun,et al.  Pseudomonas aeruginosa ExoS and ExoT. , 2004, Reviews of physiology, biochemistry and pharmacology.