The influence of the applied type of cooling after eight-stage hot compression test on the structure and mechanical properties of TRIPLEX type steels
暂无分享,去创建一个
[1] A. Chiba,et al. High-temperature deformation behavior and microstructural characterization of high-Mn bearing titanium-based alloy , 2018 .
[2] A. Haldar,et al. Current state of Fe-Mn-Al-C low density steels , 2017 .
[3] L. Dobrzański,et al. Influence of high strain rates on the structure and mechanical properties of high‐manganes austenitic TWIP‐type steel , 2016 .
[4] M. Oechsner,et al. Ein Verfahren zur Ermittlung der Rissentwicklung während des Feuerverzinkens , 2016 .
[5] R. Song,et al. Evolution of the microstructure and mechanical properties of an austenite–ferrite Fe–Mn–Al–C steel , 2015 .
[6] R. Rana. Low-Density Steels , 2014, High-Performance Ferrous Alloys.
[7] J. Seol,et al. Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels , 2014 .
[8] D. Raabe,et al. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides , 2014 .
[9] Dierk Raabe,et al. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial desi , 2012 .
[10] K. Ishida,et al. High-strength Fe–20Mn–Al–C-based Alloys with Low Density , 2010 .
[11] Ohjoon Kwon,et al. New Trends in Advanced High Strength Steel Developments for Automotive Application , 2010 .
[12] Georg Frommeyer,et al. Microstructures and Mechanical Properties of High‐Strength Fe‐Mn‐Al‐C Light‐Weight TRIPLEX Steels , 2006 .
[13] Pascal Jacques,et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels , 1998 .
[14] Chanmin Kim. Professional Ethics , 1912, Buffalo medical journal.