Post-Onset Behaviour of the Pure Katabatic Flow

An analytic improvement of the classic Prandtl model for pure katabatic flows is obtained. The one-dimensional unsteady problem employs gradually-varying eddy diffusivity K(z) fixed in time. A new solution is found for thefourth-order governing equation that couples the momentum and heat transfer in an approximate but still systematic way. The solution for wind and temperature perturbations is a generalization of the Prandtl solution allowing for: (1) Local andcumulative K(z) effects, (2) gradual evolution from the initial, discontinuous- towardthe steady-state profiles and (3) the given two-dimensional background potential temperature gradient, the surface slope and its potential temperature deficit atthe surface. The solution that is based on a relaxation equation compares adequatelywith its numerical counterpart soon after the estimated flow onset. It is a product ofthe steady-state solution with a spatio-temporal transfer function. The results can beuseful for data analyses, especially for the scale estimations of inclined stable boundarylayers and for surface flux calculations.

[1]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[2]  B. Denby Second-Order Modelling of Turbulence in Katabatic Flows , 1999 .

[3]  B. Grisogono,et al.  Glacier winds and parameterisation of the related surface heat fluxes , 2002 .

[4]  P. Duynkerke,et al.  Turbulence in a katabatic flow: Does it resemble turbulence in stable boundary layers over flat surfaces? , 1999 .

[5]  Andreas Mandelis,et al.  Diffusion Waves and their Uses , 2000 .

[6]  C. Nappo,et al.  A model study of pure katabatic flows , 1987 .

[7]  P. Calanca,et al.  An extended similarity theory for the stably stratified atmospheric surface layer , 2000 .

[8]  J. Oerlemans,et al.  Sensitivity of Glaciers and Small Ice Caps to Greenhouse Warming , 1992, Science.

[9]  C. Smeets,et al.  Turbulence Characteristics Of The Stable Boundary Layer Over A Mid-Latitude Glacier. Part Ii: Pure Katabatic Forcing Conditions , 2000 .

[10]  R. Pielke Mesoscale Numerical Modeling , 1981 .

[11]  J. Oerlemans The atmospheric boundary layer over melting glaciers , 1998 .

[12]  Turbulence in a Katabatic Flow , 1999 .

[13]  A. Hočevar,et al.  Night drainage winds , 1971 .

[14]  Branko Grisogono,et al.  The Baroclinic, Variable Eddy Viscosity Ekman Layer , 1998 .

[15]  Friedrich Defant,et al.  Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde , 1949 .

[16]  M. Broeke Momentum, Heat, and Moisture Budgets of the Katabatic Wind Layer over a Midlatitude Glacier in Summer , 1997 .

[17]  B. Grisogono A GENERALIZED EKMAN LAYER PROFILE WITH GRADUALLY VARYING EDDY DIFFUSIVITIES , 1995 .

[18]  Ludwig Prandtl,et al.  Führer durch die Strömungslehre , 1990 .

[19]  A. Smedman,et al.  Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer , 2002 .

[20]  D. S. Munro,et al.  Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation , 1989, Journal of Glaciology.

[21]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[22]  L. Mahrt Stratified Atmospheric Boundary Layers and Breakdown of Models , 1998 .

[23]  Wouter H. Knap,et al.  Elevational changes in meteorological variables along a midlatitude glacier during summer , 1997 .

[24]  M. Broeke Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer , 1997 .

[25]  J. Egger Thermally Forced Flows: Theory , 1990 .

[26]  B. Grisogono,et al.  Justifying the WKB approximation in pure katabatic flows , 2002 .

[27]  J. O'Brien,et al.  A Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer , 1970 .

[28]  Larry Mahrt,et al.  Modelling the depth of the stable boundary-layer , 1981 .

[29]  H. Björnsson,et al.  Glacio-Meteorological Investigations On Vatnajökull, Iceland, Summer 1996: An Overview , 1999 .

[30]  J. Oerlemans,et al.  A Meteorological Experiment in the Melting Zone of the Greenland Ice Sheet , 1993 .

[31]  Johannes Oerlemans,et al.  Glaciers and climate change , 2001 .

[32]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[33]  L. Armi,et al.  Mixing and entrainment in developing stratified currents , 2000, Journal of Fluid Mechanics.

[34]  A theory for the estimation of surface fluxes in simple katabatic flows , 2001 .

[35]  R. Pielke,et al.  Interactions of nocturnal slope flows with ambient winds , 1986 .

[36]  L. Mahrt Momentum Balance of Gravity Flows , 1982 .

[37]  B. Grisogono,et al.  Katabatic flow : Analytic solution for gradually varying eddy diffusivities , 2001 .