Raised object on a planar surface stroked across the fingerpad: responses of cutaneous mechanoreceptors to shape and orientation.

The representations of orientation and shape were studied in the responses of cutaneous mechanoreceptors to an isolated, raised object on a planar surface stroked across the fingerpad. The objects were the top portions of a sphere with a 5-mm radius, and two toroids each with a radius of 5 mm along one axis and differing radii of 1 or 3 mm along the orthogonal axis. The velocity and direction of stroking were fixed while the orientation of the object in the horizontal plane was varied. Each object was stroked along a series of laterally shifted, parallel, linear trajectories over the receptive fields of slowly adapting, type I (SA), and rapidly adapting, type I (RA) mechanoreceptive afferents innervating the fingerpad of the monkey. "Spatial event plots" (SEPs) of the occurrence of action potentials, as a function of the location of each object on the receptive field, were interpreted as the responses of a spatially distributed population of fibers. That portion of the plot evoked by the curved object (the SEPc) provided a representation of the shape and orientation of the two-dimensional outline of the object in the horizontal plane in contact with the skin. For both SAs and RAs, the major vector of the SEPc, obtained by a principal components analysis, was linearly related to the physical orientation of the major axis of each toroid. The spatial distribution of discharge rates [spatial rate surface profiles (SRSs), after plotting mean instantaneous frequency versus spatial locus within the SEPc] represented object shape in a third dimension, normal to the skin surface. The shape of the SA SRSs, well fitted by Gaussian equations, better represented object shape than that of the RA SRSs. A cross-sectional profile along the minor axis [spatial rate profile (SRP)] was approximately triangular for SAs. After normalization for differences in peak height, the falling slopes of the SA SRPs increased, and the base widths decreased with curvature of the object's minor axis. These curvature-related differences in slopes and widths were invariant with changes in object orientation. It is hypothesized that circularity in object shape is coded by the constancy of slopes of SA SRPs between peak and base and that the constancy of differences in the widths and falling slopes evoked by different raised objects encodes, respectively, the differences in their sizes and shapes regardless of differences in their orientation on the skin.

[1]  K. Johnson,et al.  Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  K O Johnson,et al.  Neural mechanisms of spatial tactile discrimination: neural patterns evoked by braille‐like dot patterns in the monkey. , 1981, The Journal of physiology.

[3]  K. O. Johnson,et al.  Tactile spatial resolution. II. Neural representation of Bars, edges, and gratings in monkey primary afferents. , 1981, Journal of neurophysiology.

[4]  M A Srinivasan,et al.  Cutaneous neural codes for shape. , 1994, Canadian journal of physiology and pharmacology.

[5]  K Sathian,et al.  Spatial and temporal factors determining afferent fiber responses to a grating moving sinusoidally over the monkey's fingerpad , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Kenneth O. Johnson,et al.  Neural Mechanisms of Tactual form and Texture Perception , 1992 .

[7]  M. Srinivasan,et al.  Tactile discrimination of shape: responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  C. Connor,et al.  Tactile roughness: neural codes that account for psychophysical magnitude estimates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Srinivasan,et al.  Tactile discrimination of shape: responses of rapidly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[11]  G. Lamb,et al.  Tactile discrimination of textured surfaces: peripheral neural coding in the monkey. , 1983, The Journal of physiology.

[12]  R H LaMotte,et al.  Tactile detection of a dot on a smooth surface: peripheral neural events. , 1986, Journal of neurophysiology.

[13]  M. Srinivasan,et al.  Encoding of shape and orientation of objects indented into the monkey fingerpad by populations of slowly and rapidly adapting mechanoreceptors. , 1998, Journal of neurophysiology.

[14]  M. Srinivasan,et al.  Responses of cutaneous mechanoreceptors to the shape of objects applied to the primate fingerpad. , 1993, Acta psychologica.

[15]  M A Srinivasan,et al.  Neural encoding of shape: responses of cutaneous mechanoreceptors to a wavy surface stroked across the monkey fingerpad. , 1996, Journal of neurophysiology.

[16]  A. Goodwin,et al.  Representation of curved surfaces in responses of mechanoreceptive afferent fibers innervating the monkey's fingerpad , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  K. O. Johnson,et al.  Monkey cutaneous SAI and RA responses to raised and depressed scanned patterns: effects of width, height, orientation, and a raised surround. , 1997, Journal of neurophysiology.

[18]  M. Knibestöl Stimulus—response functions of rapidly adapting mechanoreceptors in the human glabrous skin area , 1973, The Journal of physiology.

[19]  On- versus off-responses of raccoon glabrous skin rapidly adapting cutaneous mechanoreceptors. , 1980, Journal of neurophysiology.

[20]  M. Srinivasan,et al.  Tactile discrimination of shape: responses of slowly adapting mechanoreceptor afferents to a step stroked across the monkey fingerpad , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  V. Mountcastle,et al.  The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. , 1968, Journal of neurophysiology.