Finding branch-decompositions of matroids, hypergraphs, and more
暂无分享,去创建一个
[1] Maria J. Serna,et al. Constructive Linear Time Algorithms for Small Cutwidth and Carving-Width , 2000, ISAAC.
[2] James G. Oxley,et al. Matroid theory , 1992 .
[3] Mamadou Moustapha Kanté,et al. The Rank-Width of Edge-Coloured Graphs , 2007, Theory of Computing Systems.
[4] Bert Gerards,et al. On the excluded minors for the matroids of branch-width k , 2003, J. Comb. Theory, Ser. B.
[5] Petr Hlinený,et al. Branch-width, parse trees, and monadic second-order logic for matroids , 2003, J. Comb. Theory, Ser. B.
[6] Ton Kloks,et al. Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.
[7] Petr Hlinený,et al. Finding Branch-Decompositions and Rank-Decompositions , 2007, SIAM J. Comput..
[8] Dimitrios M. Thilikos,et al. Constructive Linear Time Algorithms for Branchwidth , 1997, ICALP.
[9] Eun Jung Kim,et al. The “Art of Trellis Decoding” Is Fixed-Parameter Tractable , 2015, IEEE Transactions on Information Theory.
[10] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[11] Eun Jung Kim,et al. Constructive algorithm for path-width of matroids , 2015, SODA.
[12] S. Arnborg,et al. Finding Minimal Forbidden Minors Using a Finite Congruence , 1991, ICALP.
[13] Petr Hlinený,et al. A Parametrized Algorithm for Matroid Branch-Width , 2005, SIAM J. Comput..
[14] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory B.
[15] Paul D. Seymour,et al. Testing branch-width , 2007, J. Comb. Theory, Ser. B.
[16] Robin Thomas,et al. Call routing and the ratcatcher , 1994, Comb..
[17] Paul D. Seymour,et al. Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.
[18] Udi Rotics,et al. Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..
[19] Bruce A. Reed,et al. Finding odd cycle transversals , 2004, Oper. Res. Lett..
[20] B. Mohar,et al. Graph Minors , 2009 .