Fiber Lasers: Basics, Technology, and Applications

[1]  Liang Dong Approximate Treatment of the Nonlinear Waveguide Equation in the Regime of Nonlinear Self-Focus , 2008, Journal of Lightwave Technology.

[2]  T. Alkeskjold,et al.  Estimating modal instability threshold for photonic crystal rod fiber amplifiers. , 2013, Optics express.

[3]  R. Boyd Nonlinear Optics, Third Edition , 2008 .

[4]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[5]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.

[6]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[7]  T. Eidam,et al.  Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. , 2011, Optics express.

[8]  H. Hoffman Thermally induced phase conjugation by transient real-time holography: a review , 1986 .

[9]  M. Levenson,et al.  Forced Rayleigh scattering: Thermal and acoustic effects in phase-conjugate wave-front generation , 1983 .

[10]  R. M. Herman,et al.  Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids , 1967 .

[11]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[12]  T. A. Wiggins,et al.  Stimulated Rayleigh Scattering , 1967 .

[13]  John D. Minelly,et al.  3kW single-mode direct diode-pumped fiber laser , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[14]  S. Namiki,et al.  Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes , 2002 .

[15]  W. Kaiser,et al.  Time and Frequency Dependence of Stimulated Thermal Rayleigh Scattering , 1969 .

[16]  G Fibich,et al.  Critical power for self-focusing in bulk media and in hollow waveguides. , 2000, Optics letters.

[17]  C. S. Wang,et al.  Theory of Stimulated Concentration Scattering , 1971 .

[18]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[19]  A. B. Ruffin,et al.  Design concept for optical fibers with enhanced SBS threshold. , 2005, Optics express.

[20]  Kristian Rymann Hansen,et al.  Theoretical analysis of mode instability in high-power fiber amplifiers. , 2013, Optics express.

[21]  I. L. Fabelinskii,et al.  Some studies of the spectra of thermal and stimulated molecular scattering of light. , 1967, Applied optics.

[22]  Liang Dong,et al.  Stimulated thermal Rayleigh scattering in optical fibers. , 2013, Optics express.

[23]  Liang Dong Formulation of a Complex Mode Solver for Arbitrary Circular Acoustic Waveguides , 2010, Journal of Lightwave Technology.

[24]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[25]  Liang Dong,et al.  Limits of Stimulated Brillouin Scattering Suppression in Optical Fibers With Transverse Acoustic Waveguide Designs , 2010, Journal of Lightwave Technology.

[26]  R. Stolen,et al.  Raman Oscillation in Glass Optical Waveguide , 1972 .

[27]  H. Hoffman Thermally induced degenerate four-wave mixing , 1986 .

[28]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[29]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[30]  Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen , 2005, Naturwissenschaften.

[31]  Cesar Jauregui,et al.  Mitigation of mode instabilities by dynamic excitation of fiber modes , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[32]  T. A. Wiggins,et al.  Stimulated Thermal Rayleigh Scattering , 1967 .

[33]  Cesar Jauregui,et al.  Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers. , 2012, Optics express.

[34]  T. Eidam,et al.  The impact of modal interference on the beam quality of high-power fiber amplifiers. , 2011, Optics express.

[35]  Arlee V. Smith,et al.  Mode instability in high power fiber amplifiers. , 2011, Optics express.

[36]  Arlee V Smith,et al.  Steady-periodic method for modeling mode instability in fiber amplifiers. , 2013, Optics express.

[37]  Andreas Tünnermann,et al.  Build up and decay of mode instability in a high power fiber amplifier. , 2012, Optics express.

[38]  Iyad Dajani,et al.  Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. , 2014, Optics letters.

[39]  Iyad Dajani,et al.  Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations. , 2013, Optics express.

[40]  R. Stolen,et al.  Raman gain in glass optical waveguides , 1973 .

[41]  B. Ward,et al.  Origin of thermal modal instabilities in large mode area fiber amplifiers. , 2012, Optics express.

[42]  Kristian Rymann Hansen,et al.  Thermally induced mode coupling in rare-earth doped fiber amplifiers. , 2012, Optics letters.

[43]  Arlee V. Smith,et al.  Increasing mode instability thresholds of fiber amplifiers by gain saturation. , 2013, Optics express.

[44]  Arlee V. Smith,et al.  Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers. , 2012, Optics express.