Intrinsic and extrinsic anomalous transport properties of the Heusler ferromagnets Fe2CoAl and

Recently, Heusler ferromagnets have been found to exhibit unconventional anomalous electric, thermal, and thermoelectric transport properties. In this study, we employed first-principles density functional theory calculations to systematically investigate both intrinsic and extrinsic contributions to the anomalous Hall effect (AHE), anomalous Nernst effect (ANE), and anomalous thermal Hall effect (ATHE) in two Heusler ferromagnets: Fe$_2$CoAl and Fe$_2$NiAl. Our analysis reveals that the extrinsic mechanism originating from disorder dominates the AHE and ATHE in Fe$_2$CoAl , primarily due to the steep band dispersions across the Fermi energy and corresponding high longitudinal electronic conductivity. Conversely, the intrinsic Berry phase mechanism, physically linked to nearly flat bands around the Fermi energy and gapped by spin-orbit interaction band crossings, governs the AHE and ATHE in Fe$_2$NiAl. With respect to ANE, both intrinsic and extrinsic mechanisms are competing in Fe$_2$CoAl as well as in Fe$_2$NiAl. Furthermore, Fe$_2$CoAl and Fe$_2$NiAl exhibit tunable and remarkably pronounced anomalous transport properties. For instance, the anomalous Nernst and anomalous thermal Hall conductivities in Fe$_2$NiAl attain giant values of 8.29 A/Km and 1.19 W/Km, respectively, at room temperature. To provide a useful comparison, we also thoroughly investigated the anomalous transport properties of Co$_2$MnGa. Our findings suggest that Heusler ferromagnets Fe$_2$CoAl and Fe$_2$NiAl are promising candidates for spintronics and spin-caloritronics applications.

[1]  Yugui Yao,et al.  Weyl Monoloop Semi-Half-Metal and Tunable Anomalous Hall Effect. , 2021, Nano letters.

[2]  G. Fecher,et al.  Large Anomalous Hall and Nernst Effects in High Curie‐Temperature Iron‐Based Heusler Compounds , 2021, Advanced science.

[3]  L. Balicas,et al.  Magnetic field-induced non-trivial electronic topology in Fe3−xGeTe2 , 2021, Applied Physics Reviews.

[4]  Weisheng Zhao,et al.  Colossal Anomalous Hall Effect in Ferromagnetic van der Waals CrTe2. , 2021, ACS nano.

[5]  V. I. Ivanov,et al.  Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet , 2021, Science Advances.

[6]  S. K. Srivastava,et al.  Structural, magnetic, and magnetocaloric properties of Fe2CoAl Heusler nanoalloy , 2021, 2102.11195.

[7]  R. Arita,et al.  Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge , 2020, Nature Communications.

[8]  Binghai Yan,et al.  Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl , 2020, Nature Communications.

[9]  Stephen D. Wilson,et al.  Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5 , 2020, Science Advances.

[10]  R. Arita,et al.  Iron-based binary ferromagnets for transverse thermoelectric conversion , 2020, Nature.

[11]  S. Trebst,et al.  Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3 , 2020, Science.

[12]  C. Felser,et al.  Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds , 2020, npj Computational Materials.

[13]  D. Graf,et al.  Transition from intrinsic to extrinsic anomalous Hall effect in the ferromagnetic Weyl semimetal PrAlGe1−xSix , 2019, APL Materials.

[14]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[15]  S. Srivastava,et al.  Competition of L21 and XA ordering in Fe2CoAl Heusler alloy: a first-principles study , 2019, The European Physical Journal B.

[16]  Claudia Felser,et al.  Zero‐Field Nernst Effect in a Ferromagnetic Kagome‐Lattice Weyl‐Semimetal Co3Sn2S2 , 2019, Advanced materials.

[17]  Y. Mokrousov,et al.  Fully Spin-Polarized Nodal Loop Semimetals in Alkaline Metal Monochalcogenide Monolayers. , 2019, The journal of physical chemistry letters.

[18]  D. Nishio–Hamane,et al.  Magnetic and thermoelectric properties of melt-spun ribbons of Fe2XAl (X = Co, Ni) Heusler compounds , 2018, Journal of Applied Physics.

[19]  R. Arita,et al.  Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.

[20]  Sarah J. Watzman,et al.  Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa , 2018, NPG Asia Materials.

[21]  H. Weng,et al.  Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions , 2017, Nature Communications.

[22]  Benedikt Ernst,et al.  A three-dimensional magnetic topological phase , 2017, 1712.09992.

[23]  C. Felser,et al.  Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal , 2017, Nature Physics.

[24]  Muhammad Ikhlas,et al.  Large anomalous Nernst effect at room temperature in a chiral antiferromagnet , 2017, Nature Physics.

[25]  Y. Tokura,et al.  Giant thermal Hall effect in multiferroics. , 2017, Nature materials.

[26]  Di Xiao,et al.  Large anomalous Hall effect in a half-Heusler antiferromagnet , 2016, Nature Physics.

[27]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[28]  E. S. Savchenko,et al.  Evolution of the microstructure and magnetic properties of as-cast and melt spun Fe2NiAl alloy during aging , 2015 .

[29]  Kamran Behnia,et al.  Fundamentals of Thermoelectricity , 2015 .

[30]  V. Jain,et al.  Comparative study of the structural and magnetic properties of bulk and nano-sized Fe2CoAl , 2013 .

[31]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[32]  Y. Tokura,et al.  Observation of the Magnon Hall Effect , 2010, Science.

[33]  K. Ishida,et al.  Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy , 2008 .

[34]  N. Sinitsyn,et al.  Semiclassical theories of the anomalous Hall effect , 2007, 0712.0183.

[35]  T. Ogasawara,et al.  The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space , 2003, Science.

[36]  K.H.J. Buschow,et al.  Magneto-optical properties of metallic ferromagnetic materials , 1983 .

[37]  G. V. Chester,et al.  Solid State Physics , 2000 .