The multivariate method strikes again: New power functions with low differential uniformity in odd characteristic

Let f(x) = xd be a power mapping over Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{n}$\end{document} and Ud\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {U}_{d}$\end{document} the maximum number of solutions x∈Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \mathbb {F}_{n}$\end{document} of Δf,c(x):=f(x+c)−f(x)=a, wherec,a∈Fnandc≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Delta }_{f,c}(x):=f(x+c)-f(x)=a\text {, where }c,a\in \mathbb {F}_{n}\text { and } c\neq 0$\end{document}. f is said to be differentially k-uniform if Ud=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {U}_{d} =k$\end{document}. The investigation of power functions with low differential uniformity over finite fields Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{n}$\end{document} of odd characteristic has attracted a lot of research interest since Helleseth, Rong and Sandberg started to conduct extensive computer search to identify such functions. These numerical results are well-known as the Helleseth-Rong-Sandberg tables and are the basis of many infinite families of power mappings xdn,n∈ℕ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{d_{n}},n \in \mathbb {N},$\end{document} of low uniformity (see e.g. Dobbertin et al. Discret. Math. 267, 95–112 2003; Helleseth et al. IEEE Trans. Inform Theory, 45, 475–485 1999; Helleseth and Sandberg AAECC, 8, 363–370 1997; Leducq Amer. J. Math. 1(3) 115–123 1878; Zha and Wang Sci. China Math. 53(8) 1931–1940 2010). Recently the crypto currency IOTA and Cybercrypt started to build computer chips around base-3 logic to employ their new ternary hash function Troika, which currently increases the cryptogrpahic interest in such families. Especially bijective power mappings are of interest, as they can also be employed in block- and stream ciphers. In this paper we contribute to this development and give a family of power mappings xdn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{d_{n}}$\end{document} with low uniformity over Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{n}$\end{document}, which is bijective for p ≡ 3 mod 4. For p = 3 this yields a family xdn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{d_{n}}$\end{document} with 3≤Udn≤4,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3\leq \mathcal {U}_{d_{n}}\leq 4,$\end{document} where the family of inverses has a very simple description. These results explain “open entries” in the Helleseth-Rong-Sandberg tables. We apply the multivariate method to compute the uniformity and thereby give a self-contained introduction to this method. Moreover we will prove for a related family of low uniformity introduced in Helleseth and Sandberg (AAECC, 8 363–370 1997) that it yields permutations.

[1]  Jong-Seon No,et al.  Differential Spectrum of Some Power Functions With Low Differential Uniformity , 2012, ArXiv.

[2]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[3]  Tor Helleseth,et al.  Ternary m-sequences with three-valued cross-correlation function: New decimations of Welch and Niho type , 2001, IEEE Trans. Inf. Theory.

[4]  Zhengbang Zha,et al.  Power functions with low uniformity on odd characteristic finite fields , 2010 .

[5]  É. Lucas Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .

[6]  P. Dembowski,et al.  Planes of ordern with collineation groups of ordern2 , 1968 .

[7]  Hans Dobbertin,et al.  APN functions in odd characteristic , 2003, Discret. Math..

[8]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[9]  Ulrich Dempwolff,et al.  CCZ equivalence of power functions , 2017, Designs, Codes and Cryptography.

[10]  Tor Helleseth,et al.  Some Power Mappings with Low Differential Uniformity , 1997, Applicable Algebra in Engineering, Communication and Computing.

[11]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[12]  Tor Helleseth,et al.  New Families of Almost Perfect Nonlinear Power Mappings , 1999, IEEE Trans. Inf. Theory.

[13]  R. Odoni A CLASSICAL INTRODUCTION TO MODERN NUMBER THEORY (Graduate Texts in Mathematics, 84) , 1984 .

[14]  Elodie Leducq,et al.  New families of APN functions in characteristic 3 or 5 , 2012 .