Compute Karcher means on SO(n) by the geometric conjugate gradient method

In this paper, numerical methods to compute the Karcher means on the n-order rotation group SO(n) are considered. First, after recalling Karcher means as solutions of a kind of minimization problems on SO(n), a super-linearly convergent numerical method, namely conjugate gradient method, has been used to deal with them. By the geometric structure of SO(n), the proposed algorithm is structure preserving. Then, a variety of numerical experiments are presented to demonstrate the performance and efficiency of the proposed algorithm by comparing with a recent structure preserving method.

[1]  Steven Thomas Smith,et al.  Geometric Optimization Methods for Adaptive Filtering , 2013, ArXiv.

[2]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[3]  Toshihisa Tanaka,et al.  An Algorithm to Compute Averages on Matrix Lie Groups , 2009, IEEE Transactions on Signal Processing.

[4]  Rama Chellappa,et al.  Differential geometric representations and algorithms for some pattern recognition and computer vision problems , 2014, Pattern Recognit. Lett..

[5]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[6]  Nanning Zheng,et al.  Affine iterative closest point algorithm for point set registration , 2010, Pattern Recognit. Lett..

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[9]  Yue Gao,et al.  3-D Object Retrieval and Recognition With Hypergraph Analysis , 2012, IEEE Transactions on Image Processing.

[10]  Simone G. O. Fiori A Closed-Form Solution to the Problem of Averaging over the Lie Group of Special Orthogonal Matrices , 2010, ISNN.

[11]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[12]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[13]  Xuelong Li,et al.  Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search , 2013, IEEE Transactions on Image Processing.

[14]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[15]  Boris Polyak The conjugate gradient method in extreme problems , 2015 .

[16]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[17]  Linyu Peng,et al.  The geometric structures and instability of entropic dynamical models , 2011 .

[18]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[19]  Jonathan H. Manton,et al.  A centroid (Karcher mean) approach to the joint approximate diagonalisation problem: The real symmetric case , 2006, Digit. Signal Process..

[20]  Ke Li,et al.  Probability iterative closest point algorithm for m-D point set registration with noise , 2015, Neurocomputing.

[21]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[22]  H. Karcher,et al.  How to conjugateC1-close group actions , 1973 .

[23]  P. Absil,et al.  A discrete regression method on manifolds and its application to data on SO(n) , 2011 .

[24]  Nanning Zheng,et al.  Scaling iterative closest point algorithm for registration of m-D point sets , 2010, J. Vis. Commun. Image Represent..

[25]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[26]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[27]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[28]  Robert S. Manning,et al.  Stability of an elastic rod buckling into a soft wall , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  D PlumbleyMark Geometrical methods for non-negative ICA , 2005 .

[30]  Gang Hua,et al.  Hyperspectral Image Classification Through Bilayer Graph-Based Learning , 2014, IEEE Transactions on Image Processing.

[31]  Mark D. Plumbley Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras , 2005, Neurocomputing.

[32]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[33]  Jimmie D. Lawson,et al.  Karcher means and Karcher equations of positive definite operators , 2014 .