Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting

Photoelectrochemical (PEC) water splitting represents an environmentally friendly and sustainable method to obtain hydrogen fuel. Semiconductor materials as the central components in PEC water splitting cells have decisive influences on the device's solar‐to‐hydrogen conversion efficiency. Among semiconductors, metal oxides have received a lot of attention due to their outstanding (photo)‐electrochemical stability, low cost, favorable band edge positions and wide distribution of bandgaps. In the past decades, significant processes have been made in developing metal oxide nanomaterials for PEC water splitting. In this review, the recent progress using metal oxides as photoelectrodes and co‐catalysts for PEC water splitting is summarized. Their performance, limitations and potentials are also discussed. Last, the key challenges and opportunities in the development and implementation of metal oxide nanomaterials for PEC water splitting are discussed.

[1]  Xiaobo Chen,et al.  Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities , 2014 .

[2]  Matthew R. Shaner,et al.  Photoelectrochemistry of core–shell tandem junction n–p^+-Si/n-WO_3 microwire array photoelectrodes , 2014 .

[3]  Suhuai Wei,et al.  Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO 2 , 2010 .

[4]  Yi‐Jun Xu,et al.  Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. , 2014, Physical chemistry chemical physics : PCCP.

[5]  D. Wilkinson,et al.  Nano-architecture and material designs for water splitting photoelectrodes. , 2012, Chemical Society reviews.

[6]  Michael Grätzel,et al.  Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers , 2011 .

[7]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[8]  Stefan Vajda,et al.  Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. , 2013, ACS nano.

[9]  Yiseul Park,et al.  Progress in bismuth vanadate photoanodes for use in solar water oxidation. , 2013, Chemical Society reviews.

[10]  P. Rannou,et al.  Visible Light-Driven Electron Transfer from a Dye-Sensitized p-Type NiO Photocathode to a Molecular Catalyst in Solution: Toward NiO-Based Photoelectrochemical Devices for Solar Hydrogen Production , 2015 .

[11]  M. Grätzel,et al.  Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation , 2011 .

[12]  A. Furube,et al.  Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system , 2013 .

[13]  Jianwei Sun,et al.  Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes. , 2009, Journal of the American Chemical Society.

[14]  E. Xie,et al.  Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting , 2016 .

[15]  Yi Yu,et al.  Hybrid bioinorganic approach to solar-to-chemical conversion , 2015, Proceedings of the National Academy of Sciences.

[16]  Yat Li,et al.  Review of Sn‐Doped Hematite Nanostructures for Photoelectrochemical Water Splitting , 2014 .

[17]  Sungho Jin,et al.  Nickel oxide functionalized silicon for efficient photo-oxidation of water , 2012 .

[18]  Michael Grätzel,et al.  Passivating surface states on water splitting hematite photoanodes with alumina overlayers , 2011 .

[19]  Giulia Galli,et al.  Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1−xMoxO4 electrodes showing enhanced visible light absorption , 2013 .

[20]  Liejin Guo,et al.  Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. , 2011, Nano letters.

[21]  Christopher J. Chang,et al.  Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. , 2015, Nano letters.

[22]  Riley E. Rex,et al.  Spectroelectrochemical Photoluminescence of Trap States in H-Treated Rutile TiO2 Nanowires: Implications for Photooxidation of Water , 2016 .

[23]  J. Ager,et al.  Undoped and Ni-Doped CoOx Surface Modification of Porous BiVO4 Photoelectrodes for Water Oxidation , 2016 .

[24]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[25]  Tao Yu,et al.  Solar hydrogen generation from seawater with a modified BiVO4 photoanode , 2011 .

[26]  Alexander J. Cowan,et al.  Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting. , 2016, Angewandte Chemie.

[27]  P. Fang,et al.  Mo + C codoped TiO(2) using thermal oxidation for enhancing photocatalytic activity. , 2010, ACS applied materials & interfaces.

[28]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[29]  Nathan T. Hahn,et al.  Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes , 2010 .

[30]  Tae Woo Kim,et al.  Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer. , 2016, The journal of physical chemistry letters.

[31]  Kazunari Domen,et al.  A Front‐Illuminated Nanostructured Transparent BiVO4 Photoanode for >2% Efficient Water Splitting , 2016 .

[32]  Xuhui Sun,et al.  Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency , 2014 .

[33]  Kazuhiko Maeda,et al.  Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light , 2010 .

[34]  Jennifer K. Hensel,et al.  Preparation and Photoelectrochemical Properties of CdSe/TiO 2 Hybrid Mesoporous Structures , 2010 .

[35]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[36]  Mark Z. Jacobson,et al.  Review of solutions to global warming, air pollution, and energy security , 2009 .

[37]  Matthew W. Kanan,et al.  Cobalt-phosphate oxygen-evolving compound. , 2009, Chemical Society reviews.

[38]  E. Xie,et al.  Light Illuminated α−Fe2O3/Pt Nanoparticles as Water Activation Agent for Photoelectrochemical Water Splitting , 2015, Scientific Reports.

[39]  Rose Amal,et al.  Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting , 2010 .

[40]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[41]  Jing Gu,et al.  p-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. , 2014, Journal of the American Chemical Society.

[42]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[43]  Xi-hong Lu,et al.  An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation , 2016 .

[44]  D. C. Cronemeyer,et al.  The Optical Absorption and Photoconductivity of Rutile , 1951 .

[45]  J. Zhang,et al.  Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface , 1997 .

[46]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[47]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[48]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[49]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[50]  James A. Sullivan,et al.  Carbon-Doped TiO2 and Carbon, Tungsten-Codoped TiO2 through Sol-Gel Processes in the Presence of Melamine Borate: Reflections through Photocatalysis , 2012 .

[51]  Kosi C Aroh,et al.  Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting – Part II. Photoelectrochemical study , 2011 .

[52]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[53]  Canjun Liu,et al.  Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light , 2012 .

[54]  Jinhua Ye,et al.  Reduced TiO2 nanotube arrays for photoelectrochemical water splitting , 2013 .

[55]  Takeshi Morikawa,et al.  Structural improvement of CaFe₂O₄ by metal doping toward enhanced cathodic photocurrent. , 2014, ACS applied materials & interfaces.

[56]  Allen J. Bard,et al.  Rapid Screening of BiVO4-Based Photocatalysts by Scanning Electrochemical Microscopy (SECM) and Studies of Their Photoelectrochemical Properties , 2010 .

[57]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[58]  Yongjia Zhang,et al.  Efficient H2 production in a microbial photoelectrochemical cell with a composite Cu2O/NiOx photocathode under visible light , 2016 .

[59]  F. Prinz,et al.  Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. , 2014, Nano letters.

[60]  John Rick,et al.  Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. , 2016, Nanoscale horizons.

[61]  D. Raftery,et al.  Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis , 2009 .

[62]  Yi Cui,et al.  Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells , 2016, Science Advances.

[63]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[64]  Hongjie Dai,et al.  A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts , 2014, Nano Research.

[65]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[66]  P. Yang,et al.  Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production , 2016, Science.

[67]  P. Salvador,et al.  Hole diffusion length in n‐TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis , 1984 .

[68]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[69]  G. Galli,et al.  Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry , 2017, Proceedings of the National Academy of Sciences.

[70]  Fang Qian,et al.  Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. , 2010, Nano letters.

[71]  A. Du,et al.  Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance , 2016 .

[72]  Alexander J. Cowan,et al.  Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[73]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[74]  Julián Blanco,et al.  Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends , 2009 .

[75]  Craig A. Grimes,et al.  Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting , 2010 .

[76]  H. Teng,et al.  Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3 , 2008 .

[77]  Weifeng Yao,et al.  Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. , 2008, Dalton transactions.

[78]  P. Liu,et al.  Topotactic transformation to mesoporous Co3O4 nanosheet photocathode for visible-light-driven direct photoelectrochemical hydrogen generation , 2014 .

[79]  Peng Wang,et al.  Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays , 2012 .

[80]  Fang Qian,et al.  Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. , 2009, Nano letters.

[81]  Werner,et al.  Novel optimization principles and efficiency limits for semiconductor solar cells. , 1994, Physical review letters.

[82]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[83]  Omid Zandi,et al.  Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. , 2016, Nature chemistry.

[84]  Kevin Sivula,et al.  A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting , 2014 .

[85]  F. Creutzig,et al.  On the Sustainability of Renewable Energy Sources , 2013 .

[86]  Zhen He,et al.  Self-biased solar-microbial device for sustainable hydrogen generation. , 2013, ACS nano.

[87]  P. D. Jongh,et al.  Photoelectrochemistry of Electrodeposited Cu2 O , 2000 .

[88]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[89]  Hanqing Yu,et al.  A bio-photoelectrochemical cell with a MoS3-modified silicon nanowire photocathode for hydrogen and electricity production , 2014 .

[90]  Teng Zhai,et al.  Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting , 2012 .

[91]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[92]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[93]  Yasumichi Matsumoto,et al.  New photocathode materials for hydrogen evolution: calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22) , 1987 .

[94]  Rui Liu,et al.  Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. , 2014, ChemSusChem.

[95]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[96]  Kosi C Aroh,et al.  Copper oxide photocathodes prepared by a solution based process , 2012 .

[97]  Qi-yuan Chen,et al.  Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method , 2010 .

[98]  Alexander J. Cowan,et al.  Oxygen deficient α-Fe2O3 photoelectrodes: a balance between enhanced electrical properties and trap-mediated losses , 2015, Chemical science.

[99]  Yezhou Yang,et al.  Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solutions. , 2015, Nano letters.

[100]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[101]  N. Lewis,et al.  Photoelectrochemical oxidation of anions by WO3 in aqueous and nonaqueous electrolytes , 2013 .

[102]  Miao Zhong,et al.  Surface Modification of CoO(x) Loaded BiVO₄ Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[103]  P. Kamat,et al.  Modulation of electron injection in CdSe-TiO(2) system through medium alkalinity. , 2010, Journal of the American Chemical Society.

[104]  R. Asahi,et al.  Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. , 2014, Chemical reviews.

[105]  F. Morin Electrical Properties of a-Fe2O3 , 1954 .

[106]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[107]  Hsisheng Teng,et al.  Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination , 2008 .

[108]  J. S. Lee,et al.  Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes , 2014 .

[109]  Xi-hong Lu,et al.  Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate , 2013 .

[110]  Michael Grätzel,et al.  WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .

[111]  Evolution of an Oxygen Near-Edge X-ray Absorption Fine Structure Transition in the Upper Hubbard Band in alpha-Fe2O3 upon Electrochemical Oxidation , 2011, 1106.1089.

[112]  P. Schmuki,et al.  Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse , 2010, Nanotechnology.

[113]  Yasumichi Matsumoto,et al.  Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. , 2010, Journal of the American Chemical Society.

[114]  R. Marschall,et al.  Non-metal doping of transition metal oxides for visible-light photocatalysis , 2014 .

[115]  Yat Li,et al.  Hydrogen generation from photoelectrochemical water splitting based on nanomaterials , 2009 .

[116]  Song Jin,et al.  Improved Synthesis and Electrical Properties of Si-Doped α-Fe2O3 Nanowires , 2011 .

[117]  Yat Li,et al.  Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. , 2014, ChemSusChem.

[118]  Stafford W. Sheehan,et al.  Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review , 2011 .

[119]  Rui Liu,et al.  Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers , 2014 .

[120]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[121]  Jian Wei Guo,et al.  Hydrogen-treated commercial WO3 as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. , 2013, Chemical communications.

[122]  Xile Hu,et al.  Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. , 2014, Chemical Society reviews.

[123]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[124]  Peng Wang,et al.  Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. , 2013, ACS nano.

[125]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[126]  Y. Hu A highly efficient photocatalyst--hydrogenated black TiO2 for the photocatalytic splitting of water. , 2012, Angewandte Chemie.

[127]  A. Bell,et al.  In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen , 2012 .

[128]  Liejin Guo,et al.  Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. , 2011, Nano letters.

[129]  Y. Ping,et al.  Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting , 2015, Nature Communications.

[130]  D. Gamelin,et al.  Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. , 2011, Journal of the American Chemical Society.

[131]  Ali Javey,et al.  Enabling unassisted solar water splitting by iron oxide and silicon , 2015, Nature Communications.

[132]  Shaohua Shen,et al.  Catalysing artificial photosynthesis , 2013, Nature Photonics.

[133]  Yichuan Ling,et al.  The influence of oxygen content on the thermal activation of hematite nanowires. , 2012, Angewandte Chemie.

[134]  Yang Xu,et al.  Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. , 2014, ACS nano.

[135]  Lianzhou Wang,et al.  A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting , 2015 .

[136]  Yichuan Ling,et al.  Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation. , 2011, Nano letters.

[137]  D. Errandonea,et al.  Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius , 2008, 0807.2115.

[138]  Lydia Helena Wong,et al.  Targeting Ideal Dual‐Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1‐xSe2 Photocathodes , 2015 .

[139]  E. Barea,et al.  Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst , 2013 .

[140]  R. Zeng,et al.  H2 production by the thermoelectric microconverter coupled with microbial electrolysis cell , 2016 .

[141]  Shaohui Li,et al.  Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity , 2015 .

[142]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[143]  G. Jung,et al.  CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes , 2011 .

[144]  Lifeng Liu,et al.  Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. , 2015, Chemical communications.

[145]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[146]  T. Mallouk,et al.  Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. , 2009, Journal of the American Chemical Society.

[147]  D. Cahen,et al.  Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC) , 1976, Nature.

[148]  Kazuhiko Maeda,et al.  Photocatalytic water splitting using semiconductor particles: History and recent developments , 2011 .

[149]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[150]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[151]  B. Bartlett,et al.  Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation , 2011 .

[152]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[153]  W. Li,et al.  Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. , 2012, Chemical communications.

[154]  Kuei-Hsien Chen,et al.  Plasmonic Ag@Ag3(PO4)1−x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation , 2012 .

[155]  Song Jin,et al.  Quantum dot nanoscale heterostructures for solar energy conversion. , 2013, Chemical Society reviews.

[156]  Jae Sung Lee,et al.  Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production , 2016 .

[157]  Nathan T. Hahn,et al.  Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films. , 2012, ACS nano.

[158]  S. Jiao,et al.  High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting , 2014 .

[159]  Jinhua Ye,et al.  Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. , 2008, Journal of the American Chemical Society.

[160]  Ryu Abe,et al.  Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation , 2010 .

[161]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[162]  Nathan S Lewis,et al.  Developing a scalable artificial photosynthesis technology through nanomaterials by design. , 2016, Nature nanotechnology.

[163]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[164]  Michael Grätzel,et al.  Influence of plasmonic Au nanoparticles on the photoactivity of Fe₂O₃ electrodes for water splitting. , 2011, Nano letters.

[165]  Yat Li,et al.  Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. , 2012, Nanoscale.

[166]  Suhuai Wei,et al.  Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. , 2009, Physical review letters.

[167]  G. Gary Wang,et al.  Hydrogen-treated WO3 nanoflakes show enhanced photostability , 2012 .

[168]  Jian Luo,et al.  Enhancing the visible-light photocatalytic activity of TiO2 by heat treatments in reducing environments , 2013 .

[169]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[170]  Nathan T. Hahn,et al.  Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films , 2011 .

[171]  Z. Zou,et al.  Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction , 2014 .

[172]  Hong Liu,et al.  Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. , 2014, Chemical Society reviews.

[173]  V. Subramanian,et al.  TiO2 nanotube (T_NT) surface treatment revisited: Implications of ZnO, TiCl4, and H2O2 treatment on the photoelectrochemical properties of T_NT and T_NT-CdSe. , 2013, Nanoscale.

[174]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[175]  Xiaolin Zheng,et al.  Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. , 2014, Nano letters.

[176]  Anders Hagfeldt,et al.  Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. , 2012, Chemical communications.

[177]  Hyunwoong Park,et al.  Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance , 2013 .

[178]  H. Over Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. , 2012, Chemical reviews.

[179]  K. Sopian,et al.  Electrodeposited p-type Co3O4 with high photoelectrochemical performance in aqueous medium , 2015 .

[180]  A. Kudo,et al.  Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. , 2011, Journal of the American Chemical Society.

[181]  Xiaobo Chen,et al.  Three-Dimensional Crystalline/Amorphous Co/Co3O4 Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. , 2015, Nano letters.

[182]  M. Anik,et al.  Dissolution kinetics of WO3 in acidic solutions , 2006 .

[183]  Mark D. Symes,et al.  Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting , 2017 .

[184]  G. M. Stocks,et al.  Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. , 2009, Physical review letters.

[185]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[186]  M. Batzill,et al.  A two-dimensional phase of TiO₂ with a reduced bandgap. , 2011, Nature chemistry.

[187]  J. Barber,et al.  Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. , 2015, Nano letters.

[188]  Chi Zhang,et al.  Efficient and Stable MoS2 /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water. , 2015, Chemistry, an Asian journal.

[189]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[190]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[191]  K. Sun,et al.  Solution-grown 3D Cu2O networks for efficient solar water splitting , 2014, Nanotechnology.

[192]  Kevin C. Leonard,et al.  ZnWO4/WO3 Composite for Improving Photoelectrochemical Water Oxidation , 2013 .

[193]  Kao-Der Chang,et al.  Surface Passivation of TiO2 Nanowires Using a Facile Precursor-Treatment Approach for Photoelectrochemical Water Oxidation , 2014 .

[194]  Chongyin Yang,et al.  Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. , 2013, Journal of the American Chemical Society.

[195]  T. Furtak,et al.  Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation , 2011 .

[196]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[197]  Zongping Shao,et al.  Recent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting , 2017, Advanced science.

[198]  Jiaguo Yu,et al.  Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. , 2005, Environmental science & technology.

[199]  Kui‐Qing Peng,et al.  High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. , 2011, Angewandte Chemie.

[200]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[201]  K. Domen,et al.  Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst , 1980 .

[202]  S. Chae,et al.  Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity , 2013 .

[203]  E. Carter,et al.  Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. , 2012, Journal of the American Chemical Society.

[204]  M. Grätzel,et al.  Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting , 2015 .

[205]  Zhiliang Wang,et al.  Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. , 2014, Physical chemistry chemical physics : PCCP.

[206]  Katherine L. Orchard,et al.  Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO , 2016, Chemical science.

[207]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[208]  Alexander J. Cowan,et al.  Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes , 2013 .

[209]  Aron Walsh,et al.  Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals , 2009 .

[210]  Brian A. Korgel,et al.  Electrochemical Synthesis and Characterization of p-CuBi2O4 Thin Film Photocathodes , 2012 .

[211]  Yasumichi Matsumoto,et al.  Improvement of CaFe2O4 photocathode by doping with Na and Mg , 1988 .

[212]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[213]  Xi-hong Lu,et al.  A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. , 2013, Nanoscale.

[214]  Yu Huang,et al.  Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation. , 2015, Nano letters.

[215]  Lili Wan,et al.  A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell , 2015 .

[216]  Kyoung-Shin Choi,et al.  Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[217]  M. Rȩkas,et al.  Photoelectrochemical properties of undoped and Ti-doped WO3 , 2005 .

[218]  G. Wallace,et al.  Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device , 2012 .

[219]  Ning Zhang,et al.  Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light , 2011 .

[220]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[221]  Gengfeng Zheng,et al.  Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. , 2013, ACS nano.

[222]  Zongping Shao,et al.  Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. , 2015, Chemical Society reviews.

[223]  M. Kakihana,et al.  Mechano-catalytic overall water splitting on some mixed oxides , 2000 .

[224]  Prashant V Kamat,et al.  All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. , 2015, Journal of the American Chemical Society.

[225]  B. Liu,et al.  A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. , 2013, Nano letters.

[226]  A. Akimov,et al.  Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. , 2013, Chemical reviews.

[227]  Jan Augustynski,et al.  Highly efficient water splitting by a dual-absorber tandem cell , 2012, Nature Photonics.

[228]  B. Chudasama,et al.  Single crystal growth and photoelectrochemical study of copper tungstate , 2005 .

[229]  Jinhua Ye,et al.  Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation , 2011 .

[230]  Allen J. Bard,et al.  Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. , 2012, Nano letters.

[231]  Fang Qian,et al.  Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. , 2010, Nano letters.

[232]  Fan Zhang,et al.  Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. , 2011, Angewandte Chemie.

[233]  Hua Wang,et al.  Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[234]  T. Jaramillo,et al.  Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes , 2016 .

[235]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[236]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[237]  Ralph L. House,et al.  Artificial photosynthesis: Where are we now? Where can we go? , 2015 .

[238]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[239]  R. Leary,et al.  Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis , 2011 .

[240]  K. Hashimoto,et al.  Visible-light-driven Cu(II)-(Sr(1-y)Na(y))(Ti(1-x)Mo(x))O3 photocatalysts based on conduction band control and surface ion modification. , 2010, Journal of the American Chemical Society.

[241]  Kazuhiro Sayama,et al.  High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. , 2007, Journal of combinatorial chemistry.

[242]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[243]  Bart M. Bartlett,et al.  Chemical Stability of CuWO4 for Photoelectrochemical Water Oxidation , 2013 .

[244]  Zhonghai Zhang,et al.  Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation , 2010 .

[245]  A. Walsh,et al.  Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc00389c , 2016, Chemical science.

[246]  Marika Edoff,et al.  A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency , 2013 .

[247]  Nerine J. Cherepy,et al.  Ultrafast Studies of Photoexcited Electron Dynamics in γ- and α-Fe2O3 Semiconductor Nanoparticles , 1998 .

[248]  Gengfeng Zheng,et al.  Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes , 2014 .

[249]  Michael Grätzel,et al.  Identifying champion nanostructures for solar water-splitting. , 2013, Nature materials.

[250]  Ming Lu,et al.  Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity , 2012 .

[251]  Chang Woo Kim,et al.  Facile Fabrication of WO3 Nanoplates Thin Films with Dominant Crystal Facet of (002) for Water Splitting , 2014 .

[252]  James R. McKone,et al.  Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes , 2012 .

[253]  Dong Suk Kim,et al.  Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. , 2015, ACS nano.

[254]  Jennifer K. Hensel,et al.  Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. , 2010, Nano letters.

[255]  D. Zhao,et al.  Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. , 2012, Nano letters.

[256]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[257]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[258]  S. Ramakrishna,et al.  Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. , 2015, Physical chemistry chemical physics : PCCP.

[259]  Jih-Sheng Yang,et al.  Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. , 2013, ACS applied materials & interfaces.

[260]  J. White,et al.  Photodecomposition of water over Pt/TiO2 catalysts , 1980 .

[261]  Yat Li,et al.  Chemically modified nanostructures for photoelectrochemical water splitting , 2014 .

[262]  Yat Li,et al.  Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. , 2012, Nanoscale.

[263]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[264]  Peng Wang,et al.  Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy , 2012 .

[265]  Songcan Wang,et al.  Etching treatment of vertical WO3 nanoplates as a photoanode for enhanced photoelectrochemical performance , 2016 .

[266]  A. Bard,et al.  Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy , 2011 .

[267]  Yongcai Qiu,et al.  Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. , 2012, Nano letters.

[268]  Alexander J. Cowan,et al.  Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting , 2012, Proceedings of the National Academy of Sciences.

[269]  Michael Grätzel,et al.  Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. , 2016, Nano letters.

[270]  Sophia Haussener,et al.  An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation. , 2015, Annual review of chemical and biomolecular engineering.

[271]  A. Demourgues,et al.  Influence of Sn4+ and Sn4+/Mg2+ doping on structural features and visible absorption properties of α-Fe2O3 hematite , 2010 .

[272]  Nathan T. Hahn,et al.  Improved Visible Light Harvesting of WO3 by Incorporation of Sulfur or Iodine: A Tale of Two Impurities , 2014 .

[273]  Hwan-Kyu Kim,et al.  Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device , 2015 .

[274]  Jian Shi,et al.  Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. , 2011, Nano letters.

[275]  Yiping Zhao,et al.  Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting , 2009 .

[276]  D. Barreca,et al.  The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. , 2009, ChemSusChem.