A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO)

This study presents a framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO). The VIDEO framework allows users to visually navigate large multi-objective solution sets while aiding decision makers in identifying one or more optimal designs. Specifically, the interactive visualization framework is intended to provide an innovative exploration tool for high-order Pareto-optimal solution sets (i.e., solution sets for three or more objectives). The framework is demonstrated for a long-term groundwater monitoring (LTM) application in which users can explore and visualize tradeoffs for up to four design objectives, simultaneously. Interactive functionality within the framework allows the user to select solutions within the objective space and visualize the corresponding monitoring plan's performance in the design space. This functionality provides the user with a holistic picture of the information provided by a particular solution, ultimately allowing them to make a more informed decision. In addition, the ease with which the framework allows users to navigate and compare solutions as well as design tradeoffs leads to a time efficient analysis, even when there are thousands of potential solutions.

[1]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[2]  Maja Schlüter,et al.  Application of a GIS-based simulation tool to illustrate implications of uncertainties for water management in the Amudarya river delta , 2007, Environ. Model. Softw..

[3]  Patrick M. Reed,et al.  Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design , 2005 .

[4]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[5]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[6]  Graeme L. Hammer,et al.  Exploring profit - Sustainability trade-offs in cropping systems using evolutionary algorithms , 2006, Environ. Model. Softw..

[7]  Yong Tang,et al.  Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications , 2007 .

[8]  Patrick M. Reed,et al.  Striking the Balance: Long-Term Groundwater Monitoring Design for Conflicting Objectives , 2004 .

[9]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[10]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[11]  M. Moss Some basic considerations in the design of hydrologic data networks , 1979 .

[12]  Yacov Y. Haimes,et al.  Risk modeling, assessment, and management , 1998 .

[13]  K. Arrow,et al.  Social Choice and Individual Values , 1951 .

[14]  Richard de Neufville APPLIED SYSTEMS ANALYSIS: ENGINEERING PLANNING AND TECHNOLOGY MANAGEMENT , 1990 .

[15]  Sujay V. Kumar,et al.  Evaluation Of The Constraint Method-based Evolutionary Algorithm (CMEA) For A Three-objective Problem , 2002, GECCO.

[16]  S. Ranji Ranjithan,et al.  GENETIC ALGORITHM APPROACHES FOR ADDRESSING UNMODELED OBJECTIVES IN OPTIMIZATION PROBLEMS , 2001 .

[17]  S. Ranji Ranjithan,et al.  Evaluation of the constraint method-based multiobjective evolutionary algorithm (CMEA) for a three-objective optimization problem , 2002 .

[18]  E. G. Bekele,et al.  Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms , 2005 .

[19]  P. Reed,et al.  A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications , 2007 .

[20]  Milan Zeleny,et al.  The Evolution of Optimality: De Novo Programming , 2005, EMO.

[21]  Eliot Winer,et al.  Development of visual design steering as an aid in large-scale multidisciplinary design optimization. Part I: method development , 2002 .

[22]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[23]  Dragan Savic,et al.  WATER NETWORK REHABILITATION WITH STRUCTURED MESSY GENETIC ALGORITHM , 1997 .

[24]  Jeffrey Horn,et al.  Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) , 2002 .

[25]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[26]  H. Raiffa,et al.  Decisions with Multiple Objectives , 1993 .

[27]  E. Robinson Cybernetics, or Control and Communication in the Animal and the Machine , 1963 .

[28]  D. Goldberg,et al.  A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data , 2001 .

[29]  B. Minsker,et al.  Spatial Interpolation Methods for Nonstationary Plume Data , 2004, Ground water.

[30]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[31]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Ralf Salomon,et al.  Evolutionary algorithms and gradient search: similarities and differences , 1998, IEEE Trans. Evol. Comput..

[33]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[34]  Wesley J. Chun Core Python Programming , 2000 .

[35]  Patrick M. Reed,et al.  A Framework for Visually Interactive Decision-Making and Design Using Evolutionary Multiobjective Optimization (VIDEO) , 2007 .

[36]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[37]  Timothy W. Simpson,et al.  Multidimensional Visualization and Its Application to a Design by Shopping Paradigm , 2002 .

[38]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[39]  Clif Flynt,et al.  Tcl/Tk, Second Edition: A Developer's Guide , 2003 .

[40]  Steven F. Carle,et al.  Contamination, risk, and heterogeneity: on the effectiveness of aquifer remediation , 2008 .

[41]  R. Farmani,et al.  Evolutionary multi-objective optimization in water distribution network design , 2005 .

[42]  Wesley J. Chun Core Python Programming (2nd Edition) , 2006 .

[43]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[44]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[45]  S R Ranjithan,et al.  Application of Genetic Algorithms for the Design of Ozone Control Strategies , 2000, Journal of the Air & Waste Management Association.

[46]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[47]  Patrick M. Reed,et al.  Using interactive archives in evolutionary multiobjective optimization: A case study for long-term groundwater monitoring design , 2007, Environ. Model. Softw..

[48]  Jie Shi,et al.  Multi-objective modelling and decision support using a Bayesian network approximation to a non-point source pollution model , 2007, Environ. Model. Softw..

[49]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[50]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[51]  Timothy W. Simpson,et al.  Design Space Visualization and Its Application to a Design by Shopping Paradigm , 2003, DAC 2003.

[52]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[53]  Andrea Castelletti,et al.  A procedural approach to strengthening integration and participation in water resource planning , 2006, Environ. Model. Softw..