Dynamic optical arbitrary waveform generation and measurement.

We introduce a dynamic optical arbitrary waveform generation (OAWG) technique that produces bandwidth scalable, continuous waveforms of near perfect fidelity. Additionally, OAWG's complement, real-time arbitrary optical waveform measurement (OAWM) is discussed. These approaches utilize gigahertz-bandwidth electronics to generate, or measure, truly arbitrary and dynamic optical waveforms scalable to terahertz bandwidths and infinite record lengths. We describe the theory, algorithms and enabling technologies necessary to calculate and produce a set of spectral modulations that create continuous, high-fidelity waveforms in the presence of spectral filtering from multiplexers.

[1]  A. Weiner,et al.  Line-by-line pulse shaping control for optical arbitrary waveform generation , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[2]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[3]  Chunxin Yang,et al.  Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation. , 2008, Optics letters.

[4]  S. Gee,et al.  Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications , 2006, Journal of Lightwave Technology.

[5]  J P Heritage,et al.  Rapid updating of optical arbitrary waveforms via time-domain multiplexing. , 2008, Optics letters.

[6]  Richard G. Lyons,et al.  Understanding Digital Signal Processing , 1996 .

[7]  Chen-Bin Huang,et al.  Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions. , 2007, Optics letters.

[8]  Linjie Zhou,et al.  Real-time full-field arbitrary optical waveform measurement , 2010 .

[9]  S. J. B. Yoo,et al.  Demonstration of high-fidelity dynamic optical arbitrary waveform generation , 2010 .

[10]  A. Weiner,et al.  Optical arbitrary waveform processing of more than 100 spectral comb lines , 2007 .

[11]  Loukas Paraschis,et al.  Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation. , 2009, Optics express.

[12]  Andrew M. Weiner,et al.  Theory of rapid-update line-by-line pulse shaping , 2008 .

[13]  S. J. B. Yoo,et al.  Monolithically integrated InP wafer-scale 100-channel × 10-GHz AWG and Michelson interferometers for 1-THz-bandwidth optical arbitrary waveform generation , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[14]  Mk Meint Smit,et al.  PHASAR-based WDM-devices: Principles, design and applications , 1996 .

[15]  J P Heritage,et al.  32 Phase X 32 amplitude optical arbitrary waveform generation. , 2007, Optics letters.

[16]  K. Okamoto Recent progress of integrated optics planar lightwave circuits , 1999 .

[17]  H. Takahashi,et al.  Flexible pulse waveform generation using a silica waveguide based spectrum synthesis circuit , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[18]  Wei Jiang,et al.  Active arrayed-waveguide grating with amplitude and phase control for arbitrary filter generation and high-order dispersion compensation , 2008, 2008 34th European Conference on Optical Communication.

[19]  A.M. Weiner,et al.  Theory of rapid-update line-by-line pulse shaping , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[20]  J P Heritage,et al.  High-fidelity line-by-line optical waveform generation and complete characterization using FROG. , 2007, Optics express.

[21]  Nicolas Keith Fontaine Optical arbitrary waveform generation and measurement , 2010 .

[22]  Nicolas K Fontaine,et al.  Optical Arbitrary Waveform Generation-Based Packet Generation and All-Optical Separation for Optical-Label Switching , 2010, IEEE Photonics Technology Letters.