Aberrant Signaling Pathways in Glioma

Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.

[1]  S. Elledge,et al.  The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases , 1993, Cell.

[2]  J. Romashkova,et al.  NF-κB is a target of AKT in anti-apoptotic PDGF signalling , 1999, Nature.

[3]  C. James,et al.  PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. , 2001, Journal of the National Cancer Institute.

[4]  Paul S Mischel,et al.  Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. , 2003, Cancer research.

[5]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[6]  J. Gills,et al.  Perifosine: Update on a novel Akt inhibitor , 2009, Current oncology reports.

[7]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[8]  Hongye Liu,et al.  Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma , 2007, Neuron.

[9]  Roger E. McLendon,et al.  Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth , 2010, PLoS biology.

[10]  S. Hubbard Structural analysis of receptor tyrosine kinases. , 1999, Progress in biophysics and molecular biology.

[11]  D. Brat,et al.  Malignant Glioma Physiology: Cellular Response to Hypoxia and Its Role in Tumor Progression , 2003, Annals of Internal Medicine.

[12]  M. Berger,et al.  EGFR overexpression and radiation response in glioblastoma multiforme. , 2001, International journal of radiation oncology, biology, physics.

[13]  K. Sekiguchi,et al.  Integrin α3β1‐mediated interaction with laminin‐5 stimulates adhesion, migration and invasion of malignant glioma cells , 1998 .

[14]  D. Louis,et al.  Mutation analysis of the hCHK2 gene in primary human malignant gliomas , 2000, Neurogenetics.

[15]  R. Kiss,et al.  Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features , 2001, Glia.

[16]  P. Kleihues,et al.  Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome , 2009, Acta Neuropathologica.

[17]  Dirk Troost,et al.  Absence of AKT1 Mutations in Glioblastoma , 2009, PloS one.

[18]  J. Folkman,et al.  Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. , 1977, Microvascular research.

[19]  J. Takahashi,et al.  Inhibition of cell growth and tumorigenesis of human glioblastoma cells by a neutralizing antibody against human basic fibroblast growth factor , 1991, FEBS letters.

[20]  M. Katsuki,et al.  STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells , 1999, The EMBO journal.

[21]  F. Davis,et al.  Epidemiology of brain tumors. , 2000, Current opinion in neurology.

[22]  P. Keegan,et al.  FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. , 2009, The oncologist.

[23]  K. Plate,et al.  Angiogenesis in malignant gliomas , 1995, Glia.

[24]  Manuel Hidalgo,et al.  Intracellular signal transduction pathway proteins as targets for cancer therapy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  F. Zindy,et al.  Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Puricelli,et al.  CD44 expression in human gliomas , 2002, Journal of surgical oncology.

[27]  D. Viskochil,et al.  Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. , 2010, Neurosurgical focus.

[28]  R. Stupp,et al.  2010: neuro-oncology is moving! , 2010, Current opinion in neurology.

[29]  Chitra Sarkar,et al.  Apoptosis and proliferation: correlation with p53 in astrocytic tumours , 2005, Journal of Neuro-Oncology.

[30]  J. Romashkova,et al.  NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. , 1999, Nature.

[31]  Ralph Weissleder,et al.  MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. , 2007, Cancer research.

[32]  D. Louis,et al.  CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. , 1996, Cancer research.

[33]  P. Wen,et al.  Antiangiogenic strategies for treatment of malignant gliomas , 2009, Neurotherapeutics.

[34]  P. Jeggo,et al.  Chk2 Is a Tumor Suppressor That Regulates Apoptosis in both an Ataxia Telangiectasia Mutated (ATM)-Dependent and an ATM-Independent Manner , 2002, Molecular and Cellular Biology.

[35]  M. Weller,et al.  PIK3CA alterations in primary (de novo) and secondary glioblastomas , 2007, Acta Neuropathologica.

[36]  G. Palade,et al.  Neovasculature induced by vascular endothelial growth factor is fenestrated. , 1997, Cancer research.

[37]  Eric C. Holland,et al.  Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice , 2000, Nature Genetics.

[38]  Markus Bredel,et al.  The p21-Ras signal transduction pathway and growth regulation in human high-grade gliomas , 1999, Brain Research Reviews.

[39]  M. J. van den Bent,et al.  Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma , 2009, British Journal of Cancer.

[40]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[41]  C. Brennan,et al.  Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. , 2010, Cancer cell.

[42]  C. Heldin,et al.  Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. , 1992, Cancer research.

[43]  Yue Xiong,et al.  ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways , 1998, Cell.

[44]  John Sampson,et al.  Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[45]  H. Lodish,et al.  Role of transforming growth factor beta in human disease. , 2000, The New England journal of medicine.

[46]  M. Berens,et al.  Molecular targets of glioma invasion , 2007, Cellular and Molecular Life Sciences.

[47]  A. Aguzzi,et al.  IL-6 is required for glioma development in a mouse model , 2004, Oncogene.

[48]  M. Kojima,et al.  Clinical importance of c-Met protein expression in high grade astrocytic tumors. , 1998, Neurologia medico-chirurgica.

[49]  S. Franceschi,et al.  Age as a Predictive Factor in Glioblastomas: Population-Based Study , 2009, Neuroepidemiology.

[50]  D. Steindler,et al.  Human cortical glial tumors contain neural stem‐like cells expressing astroglial and neuronal markers in vitro , 2002, Glia.

[51]  Erwin G. Van Meir,et al.  Exciting New Advances in Neuro‐Oncology: The Avenue to a Cure for Malignant Glioma , 2010, CA: a cancer journal for clinicians.

[52]  A. Hall,et al.  Rho GTPases in cell biology , 2002, Nature.

[53]  P. Kleihues,et al.  Hemizygous or homozygous deletion of the chromosomal region containing the p16INK4a gene is associated with amplification of the EGF receptor gene in glioblastomas , 1997, International journal of cancer.

[54]  M. Israel,et al.  Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. , 2002, Cancer research.

[55]  P. Kleihues,et al.  Predominant Expression of Mutant EGFR (EGFRvIII) is Rare in Primary Glioblastomas , 2004, Brain pathology.

[56]  Alessia Pica,et al.  Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[57]  David J. Anderson,et al.  Development of NG2 neural progenitor cells requires Olig gene function , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Weller Angiogenesis in glioblastoma: just another moving target? , 2010, Brain : a journal of neurology.

[59]  D. Louis,et al.  Molecular Genetic Correlates of p16, cdk4, and pRb Immunohistochemistry in Glioblastomas , 1998, Journal of neuropathology and experimental neurology.

[60]  C. Sawyers,et al.  The phosphatidylinositol 3-Kinase–AKT pathway in human cancer , 2002, Nature Reviews Cancer.

[61]  Jiri Bartek,et al.  Chk1 and Chk2 kinases in checkpoint control and cancer. , 2003, Cancer cell.

[62]  K. Kinzler,et al.  The molecular basis of Turcot's syndrome. , 1995, The New England journal of medicine.

[63]  B. Scheithauer,et al.  Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[64]  B. Bejcek,et al.  NF-kappaB controls growth of glioblastomas/astrocytomas. , 2008, Molecular and cellular biochemistry.

[65]  F. Ducray,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[66]  P. Meltzer,et al.  Amplification of a gene encoding a p53-associated protein in human sarcomas , 1992, Nature.

[67]  M. Shibuya,et al.  Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors , 1988, Molecular and cellular biology.

[68]  J. Petrini,et al.  Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. , 2009, DNA repair.

[69]  Yasuhiro Yonekawa,et al.  Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas , 1997, Acta Neuropathologica.

[70]  M. J. van den Bent,et al.  Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? , 2011, The Lancet. Oncology.

[71]  W. Cavenee,et al.  The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. , 1998, Cancer research.

[72]  J. Ptak,et al.  High Frequency of Mutations of the PIK3CA Gene in Human Cancers , 2004, Science.

[73]  D. Zagzag,et al.  Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. , 1996, Cancer research.

[74]  Frank McCormick,et al.  The GTPase superfamily: conserved structure and molecular mechanism , 1991, Nature.

[75]  M. Wigler,et al.  PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer , 1997, Science.

[76]  D. Stephenson,et al.  Recent developments in neurofibromatosis type 1 , 2007, Current opinion in neurology.

[77]  F. White,et al.  Uncovering Therapeutic Targets FOR Glioblastoma: A Systems Biology Approach , 2007, Cell cycle.

[78]  S. Sorscher EGFR mutations and sensitivity to gefitinib. , 2004, The New England journal of medicine.

[79]  B. Bejcek,et al.  NF-κB controls growth of glioblastomas/astrocytomas , 2007, Molecular and Cellular Biochemistry.

[80]  K. Sekiguchi,et al.  Integrin alpha3beta1-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells. , 1998, International journal of cancer.

[81]  M. Berger,et al.  Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. , 2005, Journal of the National Cancer Institute.

[82]  E. Appella,et al.  p53 transcriptional activity is essential for p53‐dependent apoptosis following DNA damage , 2000, The EMBO journal.

[83]  David J. Yang,et al.  Prognostic Effect of Epidermal Growth Factor Receptor and EGFRvIII in Glioblastoma Multiforme Patients , 2005, Clinical Cancer Research.

[84]  W Arap,et al.  Loss of P16INK4 expression is frequent in high grade gliomas. , 1995, Cancer research.

[85]  Allan H Friedman,et al.  Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[86]  C. Beaudry,et al.  Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. , 2005, Cancer research.

[87]  Gordon Mills,et al.  Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC , 1998, Current Biology.

[88]  M. Barbacid,et al.  RAS oncogenes: the first 30 years , 2003, Nature Reviews Cancer.

[89]  T. McDonnell,et al.  Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis. , 1997, Journal of the National Cancer Institute.

[90]  M. Nakao,et al.  CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration , 1999, Oncogene.

[91]  Y. Yonekawa,et al.  Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. , 1996, Brain pathology.

[92]  P. Meltzer,et al.  Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. , 1994, Cancer research.

[93]  M. Oren,et al.  Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. , 1994, Genes & development.

[94]  G. Bernier,et al.  BMI1 Sustains Human Glioblastoma Multiforme Stem Cell Renewal , 2009, The Journal of Neuroscience.

[95]  A Guha,et al.  Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. , 1999, Neurosurgery.

[96]  Kenji Tada,et al.  Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. , 2003, Cancer research.

[97]  David N Louis,et al.  Molecular pathology of malignant gliomas. , 2006, Annual review of pathology.

[98]  Tracy T Batchelor,et al.  Angiogenesis as a therapeutic target in malignant gliomas. , 2009, The oncologist.

[99]  P. Echlin,et al.  Amplification and overexpression of the EGF receptor gene in primary human glioblastomas , 1985 .

[100]  Kirsten Schmieder,et al.  Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma , 2011, Acta Neuropathologica.

[101]  Kimmo J Hatanpaa,et al.  Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. , 2006, Cancer research.

[102]  P. Workman,et al.  Inhibiting the phosphoinositide 3-kinase pathway for cancer treatment. , 2004, Biochemical Society transactions.

[103]  K. Ichimura,et al.  Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. , 2000, Cancer research.

[104]  Yunqing Li,et al.  The Neuronal MicroRNA miR-326 Acts in a Feedback Loop with Notch and Has Therapeutic Potential against Brain Tumors , 2009, The Journal of Neuroscience.

[105]  M. Shibuya Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor , 2009, The FEBS journal.

[106]  M. Oren,et al.  A functional p53-responsive intronic promoter is contained within the human mdm2 gene. , 1995, Nucleic acids research.

[107]  P. Echlin,et al.  Amplification and Overexpression of the EGF Receptor Gene in Primary Human Glioblastomas , 1985, Journal of Cell Science.

[108]  M. J. van den Bent,et al.  Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[109]  Guido Nikkhah,et al.  NOTCH Pathway Blockade Depletes CD133‐Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts , 2009, Stem cells.

[110]  P. Wen,et al.  Novel anti-angiogenic therapies for malignant gliomas , 2008, The Lancet Neurology.

[111]  O D Laerum,et al.  Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. , 1990, Cancer research.

[112]  Yunqing Li,et al.  microRNA-34a is tumor suppressive in brain tumors and glioma stem cells , 2010, Cell cycle.

[113]  Keith L. Ligon,et al.  Coactivation of Receptor Tyrosine Kinases Affects the Response of Tumor Cells to Targeted Therapies , 2007, Science.

[114]  Susan M. Chang,et al.  Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme , 2005, Investigational New Drugs.

[115]  A. Guha,et al.  Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop , 1995, International journal of cancer.

[116]  C. James,et al.  Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[117]  A. Olivi,et al.  Cyclopamine‐Mediated Hedgehog Pathway Inhibition Depletes Stem‐Like Cancer Cells in Glioblastoma , 2007, Stem cells.

[118]  D. Durocher,et al.  DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? , 2001, Current opinion in cell biology.

[119]  H. von Holst,et al.  Characterization of insulin-like growth factor 1 in human primary brain tumors. , 1993, Cancer research.

[120]  P. Kleihues,et al.  The p53 gene and its role in human brain tumors , 1995, Glia.

[121]  Michael E. Berens,et al.  Glioma Cell Motility is Associated with Reduced Transcription of Proapoptotic and Proliferation Genes: A cDNA Microarray Analysis , 2001, Journal of Neuro-Oncology.

[122]  S. Artavanis-Tsakonas,et al.  Notch signaling: cell fate control and signal integration in development. , 1999, Science.

[123]  H. Saya,et al.  Mechanism and biological significance of CD44 cleavage , 2004, Cancer science.

[124]  D. Louis,et al.  Association of EGFR Gene Amplification and CDKN2 (p16/MTS1) Gene Deletion in Glioblastoma Multiforme , 1997, Brain pathology.

[125]  Alejandra Bruna,et al.  High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. , 2007, Cancer cell.

[126]  Y. Yonekawa,et al.  p14ARF Deletion and Methylation in Genetic Pathways to Glioblastomas , 2001, Brain pathology.

[127]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[128]  Y. Yonekawa,et al.  Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. , 1997, Clinical cancer research : an official journal of the American Association for Cancer Research.

[129]  A. Godwin,et al.  Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. , 2002, The American journal of pathology.

[130]  P. Kleihues,et al.  Genetic pathways to primary and secondary glioblastoma. , 2007, The American journal of pathology.

[131]  W. Paulus,et al.  Diffuse brain invasion of glioma cells requires beta 1 integrins. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[132]  G. Kapoor,et al.  Mitogenic signaling cascades in glial tumors. , 2003, Neurosurgery.

[133]  M. Essig,et al.  Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[134]  M. Westphal,et al.  Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[135]  A. Yu,et al.  Tumor Necrosis Factor‐α and Basic Fibroblast Growth Factor Decrease Glial Fibrillary Acidic Protein and Its Encoding mRNA in Astrocyte Cultures and Glioblastoma Cells , 1995, Journal of neurochemistry.

[136]  C. Brennan,et al.  Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. , 2010, Cell stem cell.

[137]  E. Oldfield,et al.  Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. , 1992, Cancer research.

[138]  M. Platten,et al.  Malignant glioma biology: Role for TGF‐β in growth, motility, angiogenesis, and immune escape , 2001 .

[139]  Daniel J. Hoeppner,et al.  Notch signalling regulates stem cell numbers in vitro and in vivo , 2006, Nature.

[140]  S. Elledge,et al.  DNA damage-induced activation of p53 by the checkpoint kinase Chk2. , 2000, Science.

[141]  S. Vandenberg,et al.  PDGFRα-Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling , 2006, Neuron.

[142]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[143]  Johanna Schleutker,et al.  CHEK2 mutations in primary glioblastomas , 2005, Journal of Neuro-Oncology.

[144]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[145]  K. Kinzler,et al.  Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[146]  J. Gu,et al.  JSI-124 inhibits glioblastoma multiforme cell proliferation through G2/M cell cycle arrest and apoptosis augmentation , 2008, Cancer biology & therapy.

[147]  M. Nagane Neuro-oncology: continuing multidisciplinary progress , 2011, The Lancet Neurology.

[148]  J. Bruner,et al.  Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. , 1994, Cancer research.

[149]  P. Kleihues,et al.  IDH1 Mutations as Molecular Signature and Predictive Factor of Secondary Glioblastomas , 2009, Clinical Cancer Research.

[150]  C. Heldin,et al.  Platelet‐derived growth factor in human glioma , 1995, Glia.

[151]  G. Kapoor,et al.  Receptor Tyrosine Kinase Signaling In Gliomagenesis: Pathobiology And Therapeutic Approaches , 2003, Cancer biology & therapy.

[152]  K. Nikolich,et al.  Discoidin Domain Receptor-1a (DDR1a) Promotes Glioma Cell Invasion and Adhesion in Association with Matrix Metalloproteinase-2 , 2006, Journal of Neuro-Oncology.

[153]  Mitchel S Berger,et al.  Neural stem cells and the origin of gliomas. , 2005, The New England journal of medicine.

[154]  Y. Yonekawa,et al.  PTEN (MMAC1) Mutations Are Frequent in Primary Glioblastomas (de novo) but not in Secondary Glioblastomas , 1998, Journal of neuropathology and experimental neurology.

[155]  G. Reifenberger,et al.  Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. , 1993, Cancer research.

[156]  Paola Pisani,et al.  Genetic Pathways to Glioblastoma , 2004, Cancer Research.

[157]  D. Leroith,et al.  Insulin-like Growth Factors and Cancer , 1995, Annals of Internal Medicine.

[158]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[159]  Peter G Schultz,et al.  An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation. , 2010, Cell stem cell.

[160]  Renzo Boldorini,et al.  Frequent alterations in the expression of serine/threonine kinases in human cancers. , 2006, Cancer research.

[161]  Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics , 2010, Molecular Cancer.

[162]  M. Ahluwalia,et al.  Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. , 2010, Cancer letters.

[163]  T. Kishimoto Interleukin-6: from basic science to medicine--40 years in immunology. , 2005, Annual review of immunology.

[164]  T. Shaikh,et al.  Duplication of 7q34 in Pediatric Low‐Grade Astrocytomas Detected by High‐Density Single‐Nucleotide Polymorphism‐Based Genotype Arrays Results in a Novel BRAF Fusion Gene , 2009, Brain pathology.

[165]  James M. Roberts,et al.  CDK inhibitors: positive and negative regulators of G1-phase progression. , 1999, Genes & development.

[166]  A. Pawson,et al.  Proliferation of human malignant astrocytomas is dependent on Ras activation , 1997, Oncogene.

[167]  Andreas S. Beutler,et al.  Diffuse brain invasion of glioma cells requires β1 integrins , 1996 .

[168]  A. Kaye,et al.  Tumour angiogenesis: Its mechanism and therapeutic implications in malignant gliomas , 2009, Journal of Clinical Neuroscience.

[169]  Arata Tomiyama,et al.  Crosstalk Between the PI3K/mTOR and MEK/ERK Pathways Involved in the Maintenance of Self‐Renewal and Tumorigenicity of Glioblastoma Stem‐Like Cells , 2010, Stem cells.

[170]  S. Leung,et al.  Chromosomal instability and p53 inactivation are required for genesis of glioblastoma but not for colorectal cancer in patients with germline mismatch repair gene mutation , 2000, Oncogene.

[171]  S. Söldner-Rembold,et al.  The first 30 years , 1983 .

[172]  I. Date,et al.  Angiogenesis and invasion in glioma , 2011, Brain Tumor Pathology.

[173]  K. Alitalo,et al.  Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[174]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[175]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[176]  G. Broggi,et al.  Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma , 2003, Journal of Neuro-Oncology.

[177]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[178]  Yuri Kotliarov,et al.  Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. , 2008, Cancer cell.

[179]  M. Kuwano,et al.  HER2 overexpression increases sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells. , 2005, Cancer research.

[180]  F. DiMeco,et al.  Erratum: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma (Cancer Research (October 2004) 64 (7011-7021) , 2004 .

[181]  G. Reifenberger,et al.  CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. , 1994, Cancer research.

[182]  K. Miyazono,et al.  Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. , 1993, Oncogene.

[183]  P. Kleihues,et al.  Genetic alterations and signaling pathways in the evolution of gliomas , 2009, Cancer science.

[184]  R. Baserga,et al.  The insulin-like growth factor I receptor: a key to tumor growth? , 1995, Cancer research.

[185]  R. Reis,et al.  Mutation analysis of B-RAF gene in human gliomas , 2005, Acta Neuropathologica.

[186]  J. Folkman Angiogenesis: an organizing principle for drug discovery? , 2007, Nature reviews. Drug discovery.

[187]  P. Kleihues,et al.  IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. , 2009, The American journal of pathology.

[188]  Y. Shiloh ATM and related protein kinases: safeguarding genome integrity , 2003, Nature Reviews Cancer.

[189]  J. S. Rao,et al.  Molecular mechanisms of glioma invasiveness: the role of proteases , 2003, Nature Reviews Cancer.

[190]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[191]  Nicole Rusk,et al.  Role of Synaptojanin 2 in Glioma Cell Migration and Invasion , 2004, Cancer Research.

[192]  Y. Marie,et al.  A New Alternative Mechanism in Glioblastoma Vascularization: Tubular Vasculogenic Mimicry , 2022 .

[193]  A. Ullrich,et al.  Receptor tyrosine kinase signalling as a target for cancer intervention strategies. , 2001, Endocrine-related cancer.

[194]  C. D. Edwards,et al.  A novel p16INK4A transcript. , 1995, Cancer research.

[195]  Kevin Ryan,et al.  The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2 , 1998, The EMBO journal.