A Survey of Secure Multiparty Computation Protocols for Privacy Preserving Genetic Tests

We discuss several protocols that apply secure multiparty computation to privacy preserving genetic testing. We categorize methods into those using oblivious finite automata, additive homomorphic encryption, garbled circuits, and private set intersection. Through comparison of performance and security metrics, we aim to make recommendations for efficient and secure multiparty computation protocols for various genetic tests including edit distance, disease susceptibility, identity/paternity/- common ancestry testing, medicine and treatment efficacy for personalized medicine, and genetic compatibility.

[1]  Eyal Kushilevitz,et al.  Private information retrieval , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[2]  Emiliano De Cristofaro,et al.  Fast and Private Computation of Cardinality of Set Intersection and Union , 2012, CANS.

[3]  Emiliano De Cristofaro,et al.  Countering GATTACA: efficient and secure testing of fully-sequenced human genomes , 2011, CCS '11.

[4]  Stefan Katzenbeisser,et al.  Efficient Privacy-Preserving Big Data Processing through Proxy-Assisted ORAM , 2014, IACR Cryptol. ePrint Arch..

[5]  Zhou Li,et al.  Privacy-preserving genomic computation through program specialization , 2009, CCS.

[6]  Roksana Boreli,et al.  Secure Evaluation Protocol for Personalized Medicine , 2014, WPES.

[7]  Stefan Katzenbeisser,et al.  Privacy preserving error resilient dna searching through oblivious automata , 2007, CCS '07.

[8]  Jonathan Katz,et al.  Secure text processing with applications to private DNA matching , 2010, CCS '10.

[9]  Yehuda Lindell,et al.  A Proof of Security of Yao’s Protocol for Two-Party Computation , 2009, Journal of Cryptology.

[10]  Esko Ukkonen,et al.  Finding Approximate Patterns in Strings , 1985, J. Algorithms.

[11]  Hiroki Arimura,et al.  Oblivious Evaluation of Non-deterministic Finite Automata with Application to Privacy-Preserving Virus Genome Detection , 2014, WPES.

[12]  Keith B. Frikken Practical Private DNA String Searching and Matching through Efficient Oblivious Automata Evaluation , 2009, DBSec.

[13]  Emiliano De Cristofaro,et al.  Genodroid: are privacy-preserving genomic tests ready for prime time? , 2012, WPES '12.

[14]  E. Hayden Is the $1,000 genome for real? , 2014 .

[15]  Emiliano De Cristofaro,et al.  Fast and Private Genomic Testing for Disease Susceptibility , 2014, WPES.

[16]  Jean-Pierre Hubaux,et al.  Addressing the concerns of the lacks family: quantification of kin genomic privacy , 2013, CCS.

[17]  Wenliang Du,et al.  Private predictions on hidden Markov models , 2010, Artificial Intelligence Review.

[18]  Jonathan Katz,et al.  Faster Secure Two-Party Computation Using Garbled Circuits , 2011, USENIX Security Symposium.

[19]  Yehuda Lindell,et al.  Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries , 2008, Journal of Cryptology.

[20]  Masayuki Abe Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings , 2010, ASIACRYPT.

[21]  Stefan Katzenbeisser,et al.  Privacy-Preserving Whole Genome Sequence Processing through Proxy-Aided ORAM , 2014, WPES.

[22]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[23]  Ran Canetti Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008 , 2008, TCC.

[24]  M. Crawford The Human Genome Project. , 1990, Human biology.

[25]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[26]  Emiliano De Cristofaro,et al.  Secure genomic testing with size- and position-hiding private substring matching , 2013, WPES.

[27]  Mikhail J. Atallah,et al.  Secure and Efficient Outsourcing of Sequence Comparisons , 2012, ESORICS.

[28]  M. Sawicki,et al.  Human Genome Project. , 1993, American journal of surgery.

[29]  Jyh-Charn Liu,et al.  Computing Privacy-Preserving Edit Distance and Smith-Waterman Problems on the GPU Architecture , 2013, IACR Cryptol. ePrint Arch..

[30]  Stefan Katzenbeisser,et al.  Secure Computations on Real-Valued Signals , 2010 .

[31]  Mikhail J. Atallah,et al.  Secure outsourcing of sequence comparisons , 2004, International Journal of Information Security.

[32]  Dan Gusfield Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[33]  Wenliang Du,et al.  Secure and private sequence comparisons , 2003, WPES '03.

[34]  Stefan Katzenbeisser,et al.  Towards Secure Bioinformatics Services (Short Paper) , 2011, Financial Cryptography.

[35]  Eran Halperin,et al.  Identifying Personal Genomes by Surname Inference , 2013, Science.

[36]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[37]  Andrei Z. Broder,et al.  On the resemblance and containment of documents , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[38]  Stefan Katzenbeisser,et al.  Privacy-Preserving Matching of DNA Profiles , 2008, IACR Cryptol. ePrint Arch..

[39]  Jean-Pierre Hubaux,et al.  Privacy-Enhancing Technologies for Medical Tests Using Genomic Data , 2013, NDSS.

[40]  Peter Williams,et al.  PrivateFS: a parallel oblivious file system , 2012, CCS.

[41]  Murat Kantarcioglu,et al.  A Cryptographic Approach to Securely Share and Query Genomic Sequences , 2008, IEEE Transactions on Information Technology in Biomedicine.

[42]  Nikita Borisov,et al.  Proceedings of the 2012 ACM workshop on Privacy in the electronic society , 2012, CCS 2012.

[43]  Moni Naor,et al.  Efficient oblivious transfer protocols , 2001, SODA '01.

[44]  Vitaly Shmatikov,et al.  Towards Practical Privacy for Genomic Computation , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[45]  Stefan Katzenbeisser,et al.  Secure computations on non-integer values with applications to privacy-preserving sequence analysis , 2013, Inf. Secur. Tech. Rep..

[46]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[47]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[48]  Marina Blanton,et al.  Secure Outsourcing of DNA Searching via Finite Automata , 2010, DBSec.

[49]  Paris Smaragdis,et al.  A Framework for Secure Speech Recognition , 2007, IEEE Trans. Speech Audio Process..