Saving flops in LU based shift-and-invert strategy

The shift-and-invert method is very efficient in eigenvalue computations, in particular when interior eigenvalues are sought. This method involves solving linear systems of the form ([email protected])z=b. The shift @s is variable, hence when a direct method is used to solve the linear system, the LU factorization of ([email protected]) needs to be computed for every shift change. We present two strategies that reduce the number of floating point operations performed in the LU factorization when the shift changes. Both methods perform first a preprocessing step that aims at eliminating parts of the matrix that are not affected by the diagonal change. This leads to about 43% and 50% flops savings respectively for the dense matrices.

[1]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[2]  D. Sorensen,et al.  A Truncated RQ Iteration for Large Scale Eigenvalue Calculations , 1998 .

[3]  Wen-Wei Lin,et al.  An inexact inverse iteration for large sparse eigenvalue problems , 1997, Numer. Linear Algebra Appl..

[4]  Rudolf A. Römer,et al.  On large‐scale diagonalization techniques for the Anderson model of localization , 2005, SIAM J. Sci. Comput..

[5]  Chao Yang,et al.  Convergence analysis of an inexact truncated RQ-iteration. , 1998 .

[6]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[7]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[8]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[9]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[10]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[11]  Yvan Notay,et al.  The Jacobi–Davidson method , 2006 .

[12]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[13]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[14]  G. Golub,et al.  Inexact Inverse Iteration for Generalized Eigenvalue Problems , 2000 .

[15]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[16]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[17]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Yousef Saad,et al.  A Chebyshev-Davidson Algorithm for Large Symmetric Eigenproblems , 2007, SIAM J. Matrix Anal. Appl..

[20]  L. Trefethen,et al.  Average-case stability of Gaussian elimination , 1990 .

[21]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[22]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[23]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[24]  L. Eldén,et al.  Inexact Rayleigh Quotient-Type Methods for Eigenvalue Computations , 2002 .

[25]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[26]  Daniel B. Szyld,et al.  The matrix eigenvalue problem: GR and Krylov subspace methods , 2009, Math. Comput..

[27]  Henk A. van der Vorst,et al.  Computational methods for large eigenvalue problems , 2002 .

[28]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .