TOPoS: I. Survey design and analysis of the first sample

The metal-weak tail of the metallicity distribution function (MDF) of the Galactic Halo stars contains crucial information on the formation mode of the first generation of stars. To determine this observationally, it is necessary to observe large numbers of extremely metal-poor stars. We present here the Turn-Off Primordial Stars survey (TOPoS) that is conducted as an ESO Large Programme at the VLT. This project has {four} main goals: (i) to understand the formation of low-mass stars in a low-metallicity gas: determine the metal-weak tail of the halo MDF below [M/H]=-3.5. In particular, we aim at determining the critical metallicity, that is the lowest metallicity sufficient for the formation of low-mass stars; (ii) to determine the relative abundance of the elements in extremely metal-poor stars, which are the signature of the massive first stars; (iii) to determine the trend of the lithium abundance at the time when the Galaxy formed; and (iv) to derive the fraction of C-enhanced extremely metal-poor stars with respect to normal extremely metal-poor stars. The large number of stars observed in the SDSS provides a good sample of candidates of stars at extremely low metallicity. Candidates with turn-off colours down to magnitude g=20 were selected from the low-resolution spectra of SDSS by means of an automated procedure. X-Shooter has the potential of performing the necessary follow-up spectroscopy, providing accurate metallicities and abundance ratios for several key elements for these stars. We here present the stellar parameters of the first set of stars. The nineteen stars range in iron abundance between -4.1 and -2.9 dex relative to the Sun. Two stars have a high radial velocity and, according to our estimate of their kinematics, appear to be marginally bound to the Galaxy and are possibly accreted from another galaxy.

[1]  P. François,et al.  X-shooter GTO: evidence for a population of extremely metal-poor, alpha-poor stars , 2013, 1309.4913.

[2]  J. Uzan,et al.  Standard Big-Bang Nucleosynthesis after Planck , 2013, 1307.6955.

[3]  P. Bonifacio,et al.  Carbon-enhanced metal-poor stars: the most pristine objects? , 2013, 1303.1791.

[4]  T. Beers,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS , 2012, 1210.1946.

[5]  S. Glover The First Stars , 2012, 1209.2509.

[6]  T. Beers,et al.  THE MOST METAL-POOR STARS. III. THE METALLICITY DISTRIBUTION FUNCTION AND CARBON-ENHANCED METAL-POOR FRACTION,, , 2012, 1208.3016.

[7]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[8]  B. Plez,et al.  Turbospectrum: Code for spectral synthesis , 2012 .

[9]  Landessternwarte,et al.  Chemical abundances of distant extremely metal-poor unevolved stars , 2012, 1204.1641.

[10]  P. Bonifacio,et al.  NLTE determination of the calcium abundance and 3D corrections in extremely metal-poor stars , 2012, 1204.1139.

[11]  L. F. A. Potsdam,et al.  A primordial star in the heart of the Lion , 2012, 1203.2607.

[12]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[13]  Observatoire de la Cote d'Azur,et al.  X-Shooter GTO: chemical analysis of a sample of EMP candidates , 2011, 1109.0992.

[14]  Vanessa Hill,et al.  An extremely primitive star in the Galactic halo , 2011, Nature.

[15]  J. Conway,et al.  LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters , 2011, 1107.1606.

[16]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[17]  R. Klessen,et al.  The Formation and Fragmentation of Disks Around Primordial Protostars , 2011, Science.

[18]  R. Klessen,et al.  THE EFFECT OF DUST COOLING ON LOW-METALLICITY STAR-FORMING CLOUDS , 2011, 1101.4891.

[19]  Vanessa Hill,et al.  Extremely metal-poor stars in SDSS fields , 2011, 1101.3139.

[20]  T. Beers,et al.  The stellar content of the Hamburg/ESO survey - VI. Metallicity distribution of main-sequence turnoff stars in the Galactic halo , 2010, 1006.3985.

[21]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[22]  P. Bonifacio,et al.  Three carbon-enhanced metal-poor dwarf stars from the SDSS - Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres , 2010, 1002.1670.

[23]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[24]  T. Beers,et al.  The metal–poor end of the Spite plateau , 2009, Proceedings of the International Astronomical Union.

[25]  V. Hill,et al.  First stars XII. Abundances in extremely metal-poor turnoff stars,and comparison with the giants , 2009, 0903.4174.

[26]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[27]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[28]  P. Bonifacio,et al.  Extremely metal-poor stars from the SDSS , 2008, 0809.2948.

[29]  T. Beers,et al.  The stellar content of the Hamburg/ESO survey - V. The metallicity distribution function of the Galactic halo , 2008, 0809.1172.

[30]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[31]  T. Beers,et al.  First stars XI. Chemical composition of the extremely metal-poor dwarfs in the binary CS 22876-032 , 2007, 0712.2949.

[32]  T. Beers,et al.  First stars VIII. Enrichment of the neutron-capture elements in the early Galaxy , 2007, 0709.3454.

[33]  A. Frebel,et al.  Probing the formation of the first low‐mass stars with stellar archaeology , 2007, astro-ph/0701395.

[34]  R. Schneider,et al.  Cosmic stellar relics in the Galactic halo , 2006, astro-ph/0611130.

[35]  A. Korn,et al.  A non-LTE study of neutral and singly-ionized calcium in late-type stars , 2006, astro-ph/0609527.

[36]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[37]  S. Glover The Formation Of The First Stars In The Universe , 2004, astro-ph/0409737.

[38]  L. Girardi,et al.  Theoretical isochrones in several photometric systems. II. The Sloan Digital Sky Survey ugriz system , 2004, astro-ph/0404358.

[39]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[40]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[41]  T. Beers,et al.  First Stars. III. A detailed elemental abundance study of four extremely metal-poor giant stars ?;?? , 2003 .

[42]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[43]  France.,et al.  Automatic abundance analysis of high resolution spectra , 2002, astro-ph/0212424.

[44]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[45]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[46]  Michigan State University,et al.  A Search for Stars of Very Low Metal Abundance. V. Photoelectric UBV Photometry of Metal-weak Candidates from the Northern HK Survey , 2000, astro-ph/0006178.

[47]  T. Beers,et al.  Extremely Metal-poor Stars. VII. The Most Metal-poor Dwarf, CS 22876–032 , 2000, astro-ph/0004350.

[48]  C. Stehlé,et al.  Extensive tabulations of Stark broadened hydrogen line profiles , 1999 .

[49]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[50]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[51]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[52]  C. Allen,et al.  An improved model of the galactic mass distribution for orbit computations , 1991 .

[53]  M. Spite,et al.  Lithium abundance at the formation of the Galaxy , 1982, Nature.

[54]  Robert L. Kurucz,et al.  SYNTHE Spectrum Synthesis Programs and Line Data. , 1993 .