Host species identity, site and time drive temperate tree phyllosphere bacterial community structure

[1]  Usda Nrcs The PLANTS Database , 2015 .

[2]  S. Hubbell,et al.  Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest , 2014, Proceedings of the National Academy of Sciences.

[3]  D. Crowley,et al.  Bacterial Community Assemblages Associated with the Phyllosphere, Dermosphere, and Rhizosphere of Tree Species of the Atlantic Forest are Host Taxon Dependent , 2014, Microbial Ecology.

[4]  Christian von Mering,et al.  Ecological Consistency of SSU rRNA-Based Operational Taxonomic Units at a Global Scale , 2014, PLoS Comput. Biol..

[5]  S. Kembel,et al.  Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities1 , 2014 .

[6]  Jiajie Zhang,et al.  PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..

[7]  S. Ruppel,et al.  Progress in cultivation-independent phyllosphere microbiology , 2013, FEMS microbiology ecology.

[8]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[9]  Hojeong Kang,et al.  Changes in Soil Bacterial Community Structure with Increasing Disturbance Frequency , 2013, Microbial Ecology.

[10]  P. Schulze-Lefert,et al.  Structure and functions of the bacterial microbiota of plants. , 2013, Annual review of plant biology.

[11]  J. Vorholt Microbial life in the phyllosphere , 2012, Nature Reviews Microbiology.

[12]  M. Desprez-Loustau,et al.  Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica) , 2012 .

[13]  Omri M. Finkel,et al.  Bacterial anoxygenic photosynthesis on plant leaf surfaces. , 2012, Environmental microbiology reports.

[14]  J. Handelsman,et al.  Beyond the Venn diagram: the hunt for a core microbiome. , 2012, Environmental microbiology.

[15]  J. Chun,et al.  Distinctive Phyllosphere Bacterial Communities in Tropical Trees , 2012, Microbial Ecology.

[16]  Omri M. Finkel,et al.  Geographical Location Determines the Population Structure in Phyllosphere Microbial Communities of a Salt-Excreting Desert Tree , 2011, Applied and Environmental Microbiology.

[17]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[18]  T. Thomas,et al.  Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis , 2011, The ISME Journal.

[19]  J. Vorholt,et al.  Protection of Arabidopsis thaliana against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System , 2011, Applied and Environmental Microbiology.

[20]  Nathan J B Kraft,et al.  Functional traits and the growth-mortality trade-off in tropical trees. , 2010, Ecology.

[21]  J. Leveau,et al.  A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. , 2010, Journal of microbiological methods.

[22]  Rob Knight,et al.  The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. , 2010, Environmental microbiology.

[23]  A. Newton,et al.  Managing the ecology of foliar pathogens: ecological tolerance in crops , 2010 .

[24]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[25]  Marcus J. Claesson,et al.  Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions , 2010, Nucleic acids research.

[26]  Jean M. Macklaim,et al.  Microbiome Profiling by Illumina Sequencing of Combinatorial Sequence-Tagged PCR Products , 2010, PLoS ONE.

[27]  Campbell O. Webb,et al.  Picante: R tools for integrating phylogenies and ecology , 2010, Bioinform..

[28]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[29]  J. Vorholt,et al.  Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere , 2010, The ISME Journal.

[30]  F. Bushman,et al.  QIIME allows integration and analysis of high-throughput community sequencing data. Nat. Meth. , 2010 .

[31]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[32]  K. Jones,et al.  Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. , 2009, The New phytologist.

[33]  B. Roschitzki,et al.  Community proteogenomics reveals insights into the physiology of phyllosphere bacteria , 2009, Proceedings of the National Academy of Sciences.

[34]  M. Shishido,et al.  Powdery mildew-infection changes bacterial community composition in the phyllosphere. , 2009, Microbes and environments.

[35]  A. Arnold,et al.  Fungal endophytes: diversity and functional roles. , 2009, The New phytologist.

[36]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[37]  N. Fierer,et al.  Bacterial Succession on the Leaf Surface: A Novel System for Studying Successional Dynamics , 2009, Microbial Ecology.

[38]  T. Osono Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations , 2008, Mycologia.

[39]  Wolfgang Wanek,et al.  Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica , 2008, The ISME Journal.

[40]  E. Herre,et al.  Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. , 2007, Ecology.

[41]  W. Schwab,et al.  Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. , 2006, Journal of experimental botany.

[42]  Ü. Niinemets,et al.  Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs , 2006 .

[43]  Rob Knight,et al.  UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context , 2006, BMC Bioinformatics.

[44]  T. Osono Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. , 2006, Canadian journal of microbiology.

[45]  D. Crowley,et al.  Bacterial Diversity in Tree Canopies of the Atlantic Forest , 2006, Science.

[46]  P. Janssen Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes , 2006, Applied and Environmental Microbiology.

[47]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[48]  P. Normand The Families Frankiaceae, Geodermatophilaceae, Acidothermaceae and Sporichthyaceae , 2006 .

[49]  Vanja Klepac-Ceraj,et al.  PCR-Induced Sequence Artifacts and Bias: Insights from Comparison of Two 16S rRNA Clone Libraries Constructed from the Same Sample , 2005, Applied and Environmental Microbiology.

[50]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[51]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[52]  D. Tilman,et al.  Fungal endophytes limit pathogen damage in a tropical tree , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Lindow,et al.  Microbiology of the Phyllosphere , 2003, Applied and Environmental Microbiology.

[54]  Bill Shipley,et al.  Dry matter content as a measure of dry matter concentration in plants and their parts , 2002 .

[55]  V. J. Elliott,et al.  Fifty years of phyllosphere microbiology: significant contributions to research in related fields. , 2002 .

[56]  G. Gilbert Evolutionary ecology of plant diseases in natural ecosystems. , 2002, Annual review of phytopathology.

[57]  M. Chelius,et al.  The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L. , 2001, Microbial Ecology.

[58]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[59]  J. Andrews,et al.  The Ecology and Biogeography of Microorganisms on Plant Surfaces. , 2000, Annual review of phytopathology.

[60]  S. Lindow,et al.  Role of Leaf Surface Sugars in Colonization of Plants by Bacterial Epiphytes , 2000, Applied and Environmental Microbiology.

[61]  R. Schmid,et al.  Trees In Canada , 1995 .

[62]  D. Altman,et al.  Multiple significance tests: the Bonferroni method. , 1995, BMJ.

[63]  M. Abrams,et al.  Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: influence of light regime and shade-tolerance rank. , 1990 .

[64]  R. Burns,et al.  Silvics of North America: 1. Conifers; 2. Hardwoods , 1990 .

[65]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[66]  H. Chandler Database , 1985 .

[67]  H. Biebl,et al.  Isolation of Members of the Family Rhodospirillaceae , 1981 .

[68]  S. Lindow,et al.  Distribution of ice nucleation-active bacteria on plants in nature , 1978, Applied and environmental microbiology.