A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results

We investigate a geometrically exact generalized continua of micromorphic type in the sense of Eringen for the phenomenological description of metallic foams. The two-field problem for the macrodeformation ϕ and the “affine microdeformation” $\overline{P} \in {\text{GL}}^{{\text{ + }}} {\left( 3 \right)}$ in the quasistatic, conservative elastic case is investigated in a variational form. The elastic stress-strain relation is taken for simplicity as physically linear. Depending on material constants different mathematical existence theorems in Sobolev-spaces are recalled for the resulting nonlinear boundary value problems. These results include existence results obtained by the first author for the micro-incompressible case $\overline{P} \in {\text{SL}}{\left( 3 \right)}$ and the micropolar case $\overline{P} \in {\text{SO}}{\left( 3 \right)}$. In order to mathematically treat external loads for large deformations a new condition, called bounded external work, has to be included, overcoming the conditional coercivity of the formulation. The observed possible lack of coercivity is related to fracture of the substructure of the metallic foam. We identify the relevant effective material parameters by comparison with the linear micromorphic model and its classical response for large scale samples. We corroborate the performance of the micromorphic model by presenting numerical calculations based on a linearized version of the finite-strain model and comparing the predictions to experimental results showing a marked size effect.

[1]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[2]  F. Pradel,et al.  Homogenization of discrete media , 1998 .

[3]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables , 2003 .

[4]  S. Antman Nonlinear problems of elasticity , 1994 .

[5]  Rémy Dendievel,et al.  Estimating the overall properties of heterogeneous Cosserat materials , 1999 .

[6]  P. Steinmann A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity , 1994 .

[7]  R. Gauthier EXPERIMENTAL INVESTIGATIONS ON MICROPOLAR MEDIA , 1982 .

[8]  Wissenschaftliche Berichte Simulation von Größeneffekten mit mikromorphen Theorien , 2003 .

[9]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[10]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (II). Balance laws , 2003 .

[11]  Linghui He,et al.  Micropolar elastic fields due to a circular cylindrical inclusion , 1997 .

[12]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[13]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[14]  Kaspar Willam,et al.  Localized failure analysis in elastoplastic Cosserat continua , 1998 .

[15]  Samuel Forest,et al.  Elastoviscoplastic constitutive frameworks for generalized continua , 2003 .

[16]  Bob Svendsen,et al.  On material objectivity and reduced constitutive equations , 2001 .

[17]  S. Forest,et al.  Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams , 2006 .

[18]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[19]  Patrizio Neff,et al.  Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation , 2003 .

[20]  W. Nowacki Theory of Micropolar Elasticity , 1986 .

[21]  A. Pineau,et al.  Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading : statistical analysis and size effect , 2004 .

[22]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[23]  Raymond D. Mindlin,et al.  Influence of couple-stresses on stress concentrations , 1963 .

[24]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[25]  G. Capriz,et al.  Formal structure and classification of theories of oriented materials , 1977 .

[26]  B. Svendsen,et al.  On frame-indifference and form-invariance in constitutive theory , 1999 .

[27]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[28]  Linghui He,et al.  Micropolar elastic fields due to a spherical inclusion , 1995 .

[29]  D. Ieşan Existence theorems in micropolar elastostatics , 1971 .

[30]  Samuel Forest,et al.  Homogenization methods and mechanics of generalized continua - part 2 , 2002 .

[31]  S. Cicco Stress concentration effects in microstretch elastic bodies , 2003 .

[32]  Paul Steinmann,et al.  Micropolar elastoplasticity and its role in localization , 1993 .

[33]  Patrizio Neff,et al.  Existence of minimizers for a finite-strain micromorphic elastic solid , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[34]  A. Scalia,et al.  On Saint Venant's principle for microstretch elastic bodies , 1997 .

[35]  J. Grenestedt Effective elastic behavior of some models for perfect cellular solids , 1999 .

[36]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[37]  L. Gibson,et al.  Size effects in ductile cellular solids. Part II : experimental results , 2001 .

[38]  P. Neff,et al.  The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy‐stress tensor is symmetric , 2006 .

[39]  J. Craggs Applied Mathematical Sciences , 1973 .

[40]  Existence and continuous dependence results in the theory of microstretch elastic bodies , 1994 .

[41]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[42]  M. Gurtin,et al.  On the formulation of mechanical balance laws for structured continua , 1992 .

[43]  Georges Cailletaud,et al.  A Cosserat theory for elastoviscoplastic single crystals at finite deformation , 1997 .

[44]  P. Podio-Guidugli,et al.  Structured continua from a lagrangian point of view , 1983 .

[45]  Lorna J. Gibson,et al.  Size effects in ductile cellular solids. Part I: modeling , 2001 .

[46]  A. I. Murdoch,et al.  Objectivity in classical continuum physics: a rationale for discarding the `principle of invariance under superposed rigid body motions' in favour of purely objective considerations , 2003 .

[47]  W. Nowacki,et al.  Theory of asymmetric elasticity , 1986 .

[48]  Paul Steinmann,et al.  A unifying treatise of variational principles for two types of micropolar continua , 1997 .

[49]  W. Guenther,et al.  Zur Statik und Kinematik des Cosseratschen Kontinuums , 1958 .

[50]  G. Maugin On the structure of the theory of polar elasticity , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  R. Hsieh,et al.  Mechanics of micropolar media , 1982 .

[52]  A. Cental Eringen,et al.  Part I – Polar Field Theories , 1976 .

[53]  P. Neff A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations , 2006 .

[54]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[55]  Norman A. Fleck,et al.  Size effects in the constrained deformation of metallic foams , 2002 .

[56]  D. Ieşan,et al.  On the equilibrium theory of microstretch elastic solids , 1995 .

[57]  Michael F. Ashby,et al.  The effect of hole size upon the strength of metallic and polymeric foams , 2001 .

[58]  Georges Cailletaud,et al.  Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials , 2000 .

[59]  P. Podio-Guidugli,et al.  Extreme elastic deformations , 1991 .

[60]  Patrick Ienny,et al.  Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials , 2000 .

[61]  L. Gibson,et al.  Size effects in ductile cellular solids, I: modeling , 2001 .

[62]  H. Schaefer,et al.  Das Cosserat Kontinuum , 1967 .

[63]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[64]  Gianpietro Del Piero,et al.  ON THE METHOD OF VIRTUAL POWER IN CONTINUUM MECHANICS , 2009 .

[65]  R. Lakes,et al.  Transient study of couple stress effects in compact bone: torsion. , 1981, Journal of biomechanical engineering.

[66]  R. Toupin Elastic materials with couple-stresses , 1962 .