Design of an On-Chip Superconducting Microwave Circulator with Octave Bandwidth

We present a design for a superconducting, on-chip circulator composed of dynamically modulated transfer switches and delays. Design goals are set for the multiplexed readout of superconducting qubits. Simulations of the device show that it allows for low-loss circulation (insertion loss 20 dB) over an instantaneous bandwidth of 2.3 GHz. As the device is estimated to be linear for input powers up to -65 dBm, this design improves on the bandwidth and power-handling of previous superconducting circulators by over a factor of 50, making it ideal for integration with broadband quantum limited amplifiers.

[1]  Michael Hochberg,et al.  Broadband on-chip optical non-reciprocity using phase modulators. , 2013, Optics express.

[2]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[3]  Harish Krishnaswamy,et al.  Magnetic-free non-reciprocity based on staggered commutation , 2016, Nature Communications.

[4]  A. Kitaev,et al.  Quantum superinductor with tunable nonlinearity. , 2012, Physical review letters.

[5]  M. Lancaster,et al.  Superconducting Delay Lines , 2008 .

[6]  K. J. Satzinger,et al.  Violating Bell’s inequality with remotely connected superconducting qubits , 2018, Nature Physics.

[7]  T. Baehr‐Jones,et al.  Experimental demonstration of broadband Lorentz non-reciprocity in an integrable photonic architecture based on Mach-Zehnder modulators. , 2014, Optics express.

[8]  F. Wellstood,et al.  Microwave attenuators for use with quantum devices below 100 mK , 2017, 1703.01285.

[9]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[10]  Alexandre Blais,et al.  On-chip superconducting microwave circulator from synthetic rotation , 2015, 1502.06041.

[11]  L. Ranzani,et al.  Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier. , 2016, Physical review applied.

[12]  Yuanxun Ethan Wang,et al.  Ultra-Wide Band Non-reciprocity through Sequentially-Switched Delay Lines , 2017, Scientific Reports.

[13]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[14]  A. Krall Applied Analysis , 1986 .

[15]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[16]  O. Naaman,et al.  High Saturation Power Josephson Parametric Amplifier with GHz Bandwidth , 2017, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[17]  K. Lehnert,et al.  Breaking Lorentz Reciprocity with Frequency Conversion and Delay. , 2017, Physical review letters.

[18]  R. McDermott,et al.  Superconducting low-inductance undulatory galvanometer microwave amplifier , 2011, 1109.5209.

[19]  M. A. Gouker,et al.  Properties of Unshunted and Resistively Shunted Nb/AlOx-Al/Nb Josephson Junctions With Critical Current Densities From 0.1 to 1 mA/μm2 , 2016, IEEE Transactions on Applied Superconductivity.

[20]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[21]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[22]  Alexandre Blais,et al.  Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits , 2017, 1707.04565.

[23]  Harish Krishnaswamy,et al.  Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity , 2017, Nature Communications.

[24]  Fei Yan,et al.  Distinguishing Coherent and Thermal Photon Noise in a Circuit Quantum Electrodynamical System. , 2018, Physical review letters.

[25]  General purpose multiplexing device for cryogenic microwave systems , 2016, 1603.02716.

[26]  E. Track,et al.  Forty five nanoseconds superconducting delay lines , 1993, IEEE Transactions on Applied Superconductivity.

[27]  T. Duzer,et al.  Principles of superconductive devices and circuits, (second ed.) , 1998 .

[28]  Suman Kundu,et al.  Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product , 2015, 1510.03065.

[29]  J. Whinnery,et al.  Dispersion of Picosecond Pulses in Coplanar Transmission Lines , 1986 .

[30]  Masahiro Aoyagi,et al.  Specific capacitance of Nb/AlOx/Nb Josephson junctions with critical current densities in the range of 0.1–18 kA/cm2 , 1995 .

[31]  L. Vale,et al.  Wideband Isolation by Frequency Conversion in a Josephson-Junction Transmission Line , 2017 .

[32]  Hieng Tiong Su,et al.  Wide-band superconducting coplanar delay lines , 2005, IEEE Transactions on Microwave Theory and Techniques.

[33]  M. Devoret,et al.  Cavity Attenuators for Superconducting Qubits , 2018, Physical Review Applied.

[34]  R. Fan THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING OF ARBITRARY IMPEDANCES * , 2003 .

[35]  C. E. Fay,et al.  Operation of the Ferrite Junction Circulator , 1965 .

[36]  R. J. Schoelkopf,et al.  Reconfigurable Josephson Circulator/Directional Amplifier , 2015, 1503.00209.

[37]  Kasi Nagappan,et al.  Step-by-Step Formation of Bus Admittance Matrix , 1970 .

[38]  Jiansong Gao,et al.  The physics of superconducting microwave resonators , 2008 .

[39]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[40]  Yuanxun Ethan Wang,et al.  Integrated time-varying electromagnetic devices for ultra-wide band nonreciprocity , 2018, 2018 IEEE Radio and Wireless Symposium (RWS).

[41]  G. Hilton,et al.  Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout , 2017, 1703.01693.

[42]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[43]  O. Naaman,et al.  Josephson junction microwave modulators for qubit control , 2016, 1610.07987.

[44]  J. Chow,et al.  Gyrator operation using Josephson mixers , 2017, 1702.01149.

[45]  Liuqing Gao,et al.  A Frequency Independent Framework for Synthesis of Programmable Non-reciprocal Networks , 2018, Scientific Reports.