A short proof of the "Concavity of entropy power"
暂无分享,去创建一个
[1] T. Kasami. WEIGHT DISTRIBUTION FORMULA FOR SOME CLASS OF CYCLIC CODES , 1966 .
[2] M.B. Pursley,et al. Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.
[3] Amir Dembo,et al. Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.
[4] Max H. M. Costa,et al. A new entropy power inequality , 1985, IEEE Trans. Inf. Theory.
[5] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[6] Amir Dembo,et al. Simple proof of the concavity of the entropy power with respect to Gaussian noise , 1989, IEEE Trans. Inf. Theory.
[7] Giuseppe Toscani,et al. Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation , 1999 .
[8] Tohru Kohda,et al. Pseudonoise Sequences by Chaotic Nonlinear Maps and Their Correlation Properties , 1993 .
[9] John Douglas Olsen. Nonlinear binary sequences with asymptotically optimum periodic cross-correlation (Ph.D. Thesis abstr.) , 1978, IEEE Trans. Inf. Theory.
[10] Nelson M. Blachman,et al. The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.
[11] Clare D. McGillem,et al. A chaotic direct-sequence spread-spectrum communication system , 1994, IEEE Trans. Commun..
[12] H. McKean. Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .