Stock reduction analysis (SRA) can complement more detailed assessment methods by using long-term historical catches to estimate recruitment rates needed to have produced those catches, yet still end up with stock sizes near those estimated by the detailed methods. A longer historical perspective can also add information to the estimation of reference points such as unfished biomass (B0) or target biomass (BMSY). Deterministic SRA models provide a single stock size trajectory that is vanishingly unlikely to have actually occurred, while stochastic SRA attempts to provide probability distributions for stock size over time under alternative hypotheses about unfished recruitment rates and about variability around assumed stock-recruitment relationships. These distributions can be generated with age- structured population models by doing large numbers of Monte Carlo simulation trials and retaining those sample trials for which the stock would not have been driven to extinction by historical catches. By resampling from these trials using likelihood weights (sampling - importance resampling method), it is possible to move into fully Bayesian, state- space assessment modeling through a series of straightforward steps and to provide understandable visualization of how much the data help to reduce uncertainty about historical fishing impacts and stock status. Resume : L'analyse de reduction des stocks (SRA) peut etre complementaire des methodes plus detaillees d'evaluation, car elle utilise les captures a long terme du passe afin d'estimer les taux de recrutement necessaires pour la production de ces captures, tout en produisant des estimations de la taille des stocks qui se rapprochent de celles obtenues par les methodes detaillees. Une perspective historique plus etendue donne des renseignements supplementaires pour l'estimation des points de reference, tels que la biomasse non exploitee (B0) et la biomasse ciblee (BMSY). Les modeles SRA deterministes generent une seule trajectoire de la taille du stock dont l'existence est de moins en moins impro- bable, alors que les essais SRA stochastiques donnent une distribution de probabilite des tailles du stock en fonction du temps sous diverses hypotheses concernant les taux de recrutement dans des conditions de non exploitation et concer- nant la variabilite reliee aux relations stock-recrutement presupposees. Ces distributions peuvent etre generees par des modeles structures en fonction de l'âge en faisant un grand nombre d'essais de simulation de Monte Carlo et en rete- nant les essais echantillons chez lesquels les captures du passe n'auraient pas produit l'extinction des stocks. En echantillonnant de nouveau ces essais a l'aide d'une ponderation de vraisemblance (methode d'echantillonnage - re-echantillonnage d'importance), il est possible d'aborder une modelisation etat-espace pleinement bayesienne par une serie d'etapes directes et d'obtenir ainsi une representation comprehensible du role des donnees dans la reduction de l'incertitude concernant les impacts passes de la peche et le statut des stocks.
[1]
Steven J. D. Martell,et al.
Fisheries Ecology and Management
,
2004
.
[2]
T R Hammond,et al.
A recipe for Bayesian network driven stock assessment
,
2004
.
[3]
Mark N. Maunder,et al.
Estimation of recruitment in catch-at-age models
,
2003
.
[4]
C. Walters,et al.
Nechako River White Sturgeon Recovery Planning: Summary of Stock Assessment and
,
2001
.
[5]
Ransom A. Myers,et al.
Maximum reproductive rate of fish at low population sizes
,
1999
.
[6]
James N. Ianelli,et al.
Bayesian stock assessment using catch-age data and the sampling - importance resampling algorithm
,
1997
.
[7]
Paul Gerhard Kinas,et al.
Bayesian fishery stock assessment and decision making using adaptive importance sampling
,
1996
.
[8]
David B. Dunson,et al.
Bayesian Data Analysis
,
2010
.
[9]
J. C. Echols.
Fraser River white sturgeon long-term management : objectives, strategies and uncertainties
,
1995
.
[10]
André E. Punt,et al.
A Bayesian Approach to Stock Assessment and Harvest Decisions Using the Sampling/Importance Resampling Algorithm
,
1994
.
[11]
Jon T. Schnute,et al.
A General Framework for Developing Sequential Fisheries Models
,
1994
.
[12]
Carl J. Walters,et al.
Adaptive Management of Renewable Resources
,
1986
.
[13]
Daniel H. Ito,et al.
Generalized Stock Reduction Analysis
,
1984
.
[14]
J. V. Tagart,et al.
Stock Reduction Analysis, Another Solution to the Catch Equations
,
1982
.
[15]
C. Walters,et al.
Adaptive Control of Fishing Systems
,
1976
.
[16]
P. A. Larkin,et al.
Age, Growth, Food, and Yield of the White Sturgeon (Acipenser transmontanus) of the Fraser River, British Columbia
,
1968
.