Accurate Closed-form Estimation of Local Affine Transformations Consistent with the Epipolar Geometry

For a pair of images satisfying the epipolar constraint, a method for accurate estimation of local affine transformations is proposed. The method returns the local affine transformation consistent with the epipolar geometry that is closest in the least squares sense to the initial estimate provided by an affine-covariant detector. The minimized L2 norm of the affine matrix elements is found in closed-form. We show that the used norm has an intuitive geometric interpretation. The method, with negligible computational requirements, is validated on publicly available benchmarking datasets and on synthetic data. The accuracy of the local affine transformations is improved for all detectors and all image pairs. Implicitly, precision of the tested feature detectors was compared. The Hessian-Affine detector combined with ASIFT view synthesis was the most accurate.

[1]  Kevin Köser,et al.  Geometric estimation with local affine frames and free-form surfaces , 2009 .

[2]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[3]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Carolina Raposo,et al.  Theory and Practice of Structure-From-Motion Using Affine Correspondences , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Jiri Matas,et al.  MODS: Fast and robust method for two-view matching , 2015, Comput. Vis. Image Underst..

[6]  Alexandru Tupan,et al.  Triangulation , 1997, Comput. Vis. Image Underst..

[7]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[8]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Joseph M. Francos,et al.  Conic epipolar constraints from affine correspondences , 2014, Comput. Vis. Image Underst..

[11]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[12]  J. Mixter Fast , 2012 .

[13]  Kenneth Turkowski Transformations of surface normal vectors , 1990 .

[14]  Levente Hajder,et al.  Novel Methods for Estimating Surface Normals from Affine Transformations , 2015, VISIGRAPP.

[15]  Dmitry Chetverikov,et al.  Quadratic Transformation for Planar Mapping of Implicit Surfaces , 2012, Journal of Mathematical Imaging and Vision.

[16]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[17]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[18]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[19]  Levente Hajder,et al.  Novel Ways to Estimate Homography from Local Affine Transformations , 2016, VISIGRAPP.

[20]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[21]  Stepán Obdrzálek,et al.  Local affine frames for wide-baseline stereo , 2002, Object recognition supported by user interaction for service robots.

[22]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[23]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[24]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[25]  Reinhard Koch,et al.  Differential Spatial Resection - Pose Estimation Using a Single Local Image Feature , 2008, ECCV.