Superbubbles as an empirical characteristic of directed networks

Superbubbles are acyclic induced subgraphs of a digraph with single entrance and exit that naturally arise in the context of genome assembly and the analysis of genome alignments in computational biology. These structures can be computed in linear time and are confined to non-symmetric digraphs. We demonstrate empirically that graph parameters derived from superbubbles provide a convenient means of distinguishing different classes of real-world graphical models, while being largely unrelated to simple, commonly used parameters.

[1]  F. Harary,et al.  Eccentricity and centrality in networks , 1995 .

[2]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[3]  Walter Willinger,et al.  Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications , 2005, Internet Math..

[4]  Tetsuo Shibuya,et al.  An $\bm{O(m\, \log\, m)}$ -Time Algorithm for Detecting Superbubbles , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[6]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[7]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[8]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[9]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[10]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[11]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Benedict Paten,et al.  Superbubbles, Ultrabubbles, and Cacti , 2018, J. Comput. Biol..

[13]  Rok Sosic,et al.  SNAP , 2016, ACM Trans. Intell. Syst. Technol..

[14]  Costas S. Iliopoulos,et al.  Theoretical Linear-time superbubble identification algorithm for genome assembly , 2015 .

[15]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[16]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[17]  William Casey,et al.  Cybersecurity and Applied Mathematics , 2016 .

[18]  Jacob G Foster,et al.  Edge direction and the structure of networks , 2009, Proceedings of the National Academy of Sciences.

[19]  A. Shimbel Structural parameters of communication networks , 1953 .

[20]  Alexandru Iosup,et al.  Graphalytics: A Big Data Benchmark for Graph-Processing Platforms , 2015, GRADES@SIGMOD/PODS.

[21]  Dhruv Mubayi,et al.  Realizing degree imbalances in directed graphs , 2001, Discret. Math..

[22]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[23]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[24]  G. Fischer,et al.  Comparative study on synteny between yeasts and vertebrates. , 2011, Comptes rendus biologies.

[25]  Michael Sammeth,et al.  Complete Alternative Splicing Events Are Bubbles in Splicing Graphs , 2009, J. Comput. Biol..

[26]  Peter F. Stadler,et al.  Direct Superbubble Detection , 2019, Algorithms.

[27]  Cesar H. Comin,et al.  Entropy and Heterogeneity Measures for Directed Graphs , 2013, SIMBAD.

[28]  Kunihiko Sadakane,et al.  Detecting Superbubbles in Assembly Graphs , 2013, WABI.

[29]  Peter F. Stadler,et al.  Coordinate systems for supergenomes , 2018, Algorithms for Molecular Biology.

[30]  Kay Nieselt,et al.  GenomeRing: alignment visualization based on SuperGenome coordinates , 2012, Bioinform..