A quantum model of feed-forward neural networks with unitary learning algorithms

Quantum neural networks (QNNs) are promised to be powerful computing devices that integrate the advantages of artificial neural networks (ANNs) and quantum computing. Due to the different dynamics between ANN and quantum computing, constructing a reasonable QNN model with efficient learning algorithms is still an open challenge. In this paper, we propose a new quantum model for feed-forward neural networks whose learning algorithm applies quantum superposition and parallelism features. This model contains classical feed-forward neural network and the amplitude encoding QNN model as special cases. Moreover, it inherits the advantages and avoids the disadvantages of the amplitude encoding model. We give a quantum-classical hybrid procedure to implement the learning algorithm. The result shows that we can train this QNN by a series of unitary operators efficiently.

[1]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[2]  Teresa Bernarda Ludermir,et al.  Quantum perceptron over a field and neural network architecture selection in a quantum computer , 2016, Neural Networks.

[3]  Andrei N. Soklakov,et al.  Efficient state preparation for a register of quantum bits , 2004 .

[4]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[5]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[6]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[8]  M. Altaisky Quantum neural network , 2001 .

[9]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[10]  Changpeng Shao A Quantum Model for Multilayer Perceptron , 2018, 1808.10561.

[11]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[12]  S. Lloyd,et al.  Quantum Hopfield neural network , 2017, Physical Review A.

[13]  Chiara Macchiavello,et al.  An artificial neuron implemented on an actual quantum processor , 2018, npj Quantum Information.

[14]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[15]  Nobuyuki Matsui,et al.  Qubit neural network and its learning efficiency , 2005, Neural Computing & Applications.

[16]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[17]  Maria Schuld,et al.  Simulating a perceptron on a quantum computer , 2014, ArXiv.

[18]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[19]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[20]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[21]  Peng Li,et al.  Simulation of a Multidimensional Input Quantum Perceptron , 2018, Quantum Inf. Process..

[22]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[23]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[24]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[25]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[26]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[27]  Ammar Daskin,et al.  A Quantum Implementation Model for Artificial Neural Networks , 2016, ArXiv.

[28]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[29]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[30]  Alán Aspuru-Guzik,et al.  Quantum Neuron: an elementary building block for machine learning on quantum computers , 2017, ArXiv.

[31]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.