Automatic identification of secondary structure in globular proteins.

[1]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[2]  M G Rossmann,et al.  A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. , 1977, Journal of molecular biology.

[3]  H. Scheraga,et al.  Status of empirical methods for the prediction of protein backbone topography. , 1976, Biochemistry.

[4]  M Levitt,et al.  Folding and stability of helical proteins: carp myogen. , 1976, Journal of molecular biology.

[5]  P Argos,et al.  An assessment of protein secondary structure prediction methods based on amino acid sequence. , 1976, Biochimica et biophysica acta.

[6]  J Greer Application of the automated interpretation of electron density maps to Bence-Jones protein Rhe. , 1976, Journal of molecular biology.

[7]  L. H. Jensen,et al.  Structure of Peptococcus aerogenes ferredoxin. Refinement at 2 A resolution. , 1976, The Journal of biological chemistry.

[8]  M. Levitt A simplified representation of protein conformations for rapid simulation of protein folding. , 1976, Journal of molecular biology.

[9]  T. Steitz,et al.  High resolution x-ray structure of yeast hexokinase, an allosteric protein exhibiting a non-symmetric arrangement of subunits. , 1976, Journal of molecular biology.

[10]  C. Chothia,et al.  Structural patterns in globular proteins , 1976, Nature.

[11]  H. Watson,et al.  The Stereochemistry of the Protein Myoglobin , 1976 .

[12]  M F Schmid,et al.  Structure of carboxypeptidase B at 2-8 A resolution. , 1976, Journal of molecular biology.

[13]  H. Eklund,et al.  Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. , 1976, Journal of molecular biology.

[14]  J. Kraut,et al.  Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. X-ray crystallographic comparison of lysine- and phenylalanine-polypeptide chloromethyl ketone-inhibited subtilisin. , 1976, The Journal of biological chemistry.

[15]  J. Greer,et al.  Automated interpretation of electron density maps of proteins: derivation of atomic co-ordinates for the main chain. , 1976, Journal of molecular biology.

[16]  H A Scheraga,et al.  Statistical mechanical treatment of protein conformation. I. Conformational properties of amino acids in proteins. , 1976, Macromolecules.

[17]  G M Edelman,et al.  The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. , 1977, The Journal of biological chemistry.

[18]  M G Rossmann,et al.  Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. , 1977, The Journal of biological chemistry.

[19]  R Balasubramanian,et al.  Some new methods and general results of analysis of protein crystallographic structural data. , 1975, Journal of molecular biology.

[20]  J. Greer Automated interpretation of electron density maps of proteins: A note on α-helical regions , 1975 .

[21]  R. Huber,et al.  The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0-A resolution. , 1975, Biochemistry.

[22]  K. B. Ward,et al.  Quaternary and tertiary structure of haemerythrin , 1975, Nature.

[23]  W. E. Thiessen,et al.  Tertiary structural differences between microbial serine proteases and pancreatic serine enzymes , 1975, Nature.

[24]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[25]  G. Fermi,et al.  Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2-5 A resolution: refinement of the atomic model. , 1975, Journal of molecular biology.

[26]  G. Petsko,et al.  Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5Å resolution: using amino acid sequence data , 1975, Nature.

[27]  M. Levitt,et al.  Computer simulation of protein folding , 1975, Nature.

[28]  J. Deisenhofer,et al.  Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at l.5 Å resolution , 1975 .

[29]  J. Kraut,et al.  Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. , 1976, The Journal of biological chemistry.

[30]  H A Scheraga,et al.  Low-energy structures of two dipeptides and their relationship to bend conformations. , 1974, Macromolecules.

[31]  V. Lim Algorithms for prediction of α-helical and β-structural regions in globular proteins , 1974 .

[32]  C. Blake,et al.  Strjcture of human plasma prealbumin at 2-5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. , 1974, Journal of molecular biology.

[33]  R. M. Burnett,et al.  The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution. , 1974, The Journal of biological chemistry.

[34]  C. D. Barry,et al.  Comparison of predicted and experimentally determined secondary structure of adenyl kinase , 1974, Nature.

[35]  G. Schulz,et al.  Three-dimensional structure of adenyl kinase , 1974, Nature.

[36]  E. Padlan,et al.  Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiata, at 2.5 A resolution. , 1974, The Journal of biological chemistry.

[37]  R. Palmer,et al.  The structure of ribonuclease at 2-5 Angström resolution. , 1974, Journal of molecular biology.

[38]  P R Evans,et al.  Structure of horse muscle phosphoglycerate kinase. Some results on the chain conformation, substrate binding and evolution of the molecule from a 3 angstrom Fourier map. , 1974, Journal of molecular biology.

[39]  R. Stroud,et al.  Structure and specific binding of trypsin: comparison of inhibited derivatives and a model for substrate binding. , 1974, Journal of molecular biology.

[40]  M. Levitt,et al.  Energy refinement of hen egg-white lysozyme. , 1974, Journal of molecular biology.

[41]  J Greer Three-dimensional pattern recognition: an approach to automated interpretation of electron density maps of proteins. , 1974, Journal of molecular biology.

[42]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[43]  J. W. Campbell,et al.  Structure of yeast phosphoglycerate mutase , 1974, Nature.

[44]  H. Scheraga,et al.  Analysis of Conformations of Amino Acid Residues and Prediction of Backbone Topography in Proteins , 1974 .

[45]  N. Xuong,et al.  The structure of oxidized cytochrome c 2 of Rhodospirillum rubrum. , 1976, The Journal of biological chemistry.

[46]  L. Banaszak,et al.  Conformation of nicotinamide adenine dinucleotide bound to cytoplasmic malate dehydrogenase. , 1973, Biochemistry.

[47]  R. Dickerson,et al.  Recurrence of the cytochrome fold in a nitrate-respiring bacterium. , 1973, Journal of molecular biology.

[48]  R. Dickerson,et al.  The structure of ferrocytochrome c at 2.45 A resolution. , 1973, The Journal of biological chemistry.

[49]  Atomic coordinates for tosyl-elastase. , 1973, Biochemical and biophysical research communications.

[50]  C. Morimoto,et al.  The structure of α-chymotrypsin. I. The refinement of the heavy-atom isomorphous derivatives at 2.8 Å resolution , 1973 .

[51]  K. D. Watenpaugh,et al.  Refinement of the model of a protein: rubredoxin at 1.5 Å resolution , 1973 .

[52]  R. Kretsinger,et al.  Carp muscle calcium-binding protein. II. Structure determination and general description. , 1973, The Journal of biological chemistry.

[53]  J. Karle,et al.  Crystal structure analysis of sea lamprey hemoglobin at 2 Å resolution , 1973 .

[54]  K. D. Hardman,et al.  Structure of concanavalin A at 2.4-A resolution. , 1972, Biochemistry.

[55]  Karl D. Hardman,et al.  Structure of concanavalin A at 2.4-Ang resolution , 1972 .

[56]  B. Matthews,et al.  The structure of thermolysin: an electron density map at 2-3 A resolution. , 1972, Journal of molecular biology.

[57]  D. M. Blow,et al.  Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. , 1972, Journal of molecular biology.

[58]  Nobuhiko Saitô,et al.  Tertiary Structure of Proteins. I. : Representation and Computation of the Conformations , 1972 .

[59]  J. Drenth,et al.  Subtilisin Novo. The three-dimensional structure and its comparison with subtilisin BPN'. , 1972, European journal of biochemistry.

[60]  L Järup,et al.  Crystal structure of human carbonic anhydrase C. , 1972, Nature: New biology.

[61]  Tom L. Blundell,et al.  Insulin: The Structure in the Crystal and its Reflection in Chemistry and Biology by , 1972 .

[62]  J. Richardson,et al.  A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus. I. Experimental procedures and chain tracing. , 1971, The Journal of biological chemistry.

[63]  I. C. O. B. Nomenclature IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rules (1969). , 1970, Biochemistry.

[64]  J. Drenth,et al.  The structure of papain. , 1971, Advances in protein chemistry.

[65]  M. Rossmann,et al.  Structure of Lactate Dehydrogenase at 2.8 Å Resolution , 1970, Nature.

[66]  W. Lovenberg,et al.  Structure of rubredoxin: an x-ray study to 2.5 A resolution. , 1970, Journal of molecular biology.

[67]  N. Xuong,et al.  Chymotrypsinogen: 2,5-Å crystal structure, comparison with α-chymotrypsin, and implications for zymogen activation , 1970 .

[68]  D. Shotton,et al.  Three-dimensional Fourier Synthesis of Tosyl-elastase at 3.5 Å Resolution , 1970, Nature.

[69]  A. W. Hanson,et al.  The three-dimensional structure of ribonuclease-S. Interpretation of an electron density map at a nominal resolution of 2 A. , 1970, The Journal of biological chemistry.

[70]  J. Kraut,et al.  Structure of Subtilisin BPN′ at 2.5 Å Resolution , 1969, Nature.

[71]  C. Venkatachalam Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units , 1968, Biopolymers.

[72]  L. Mazzarella,et al.  Structure and function of haemoglobin: IV. A three-dimensional Fourier synthesis of horse deoxyhaemoglobin at 5.5 Å resolution , 1967 .

[73]  R. Diamond,et al.  A mathematical model-building procedure for proteins , 1966 .

[74]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[75]  M. Perutz,et al.  Structure Of Hæemoglobin: A Three-Dimensional Fourier Synthesis of Reduced Human Haemoglobin at 5.5 Å Resolution , 1963, Nature.

[76]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[77]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[78]  R. E. Marsh,et al.  An investigation of the structure of silk fibroin. , 1955, Biochimica et biophysica acta.

[79]  M. Perutz,et al.  New X-Ray Evidence on the Configuration of Polypeptide Chains: Polypeptide Chains in Poly-γ-benzyl-L-glutamate, Keratin and Hæmoglobin , 1951, Nature.