Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces

We investigate the analytic regularity of the Stokes problem in a polygonal domain Ω ⊂ R2 with straight sides and piecewise analytic data. We establish a shift theorem in weighted Sobolev spaces of arbitrary order with explicit control of the order-dependence of the constants. The shift-theorem in the framework of countably weighted Sobolev spaces implies in particular interior analyticity and Gevrey-type analytic regularity near the corners.

[1]  Ivo Babuška,et al.  On the Regularity of Elasticity Problems with Piecewise Analytic Data , 1993 .

[2]  I. Babuška,et al.  The h-p version of the finite element method , 1986 .

[3]  B. Guo,et al.  REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA , Ih THE TRACE SPACES AND APPLICATION TO THE BOUNDARY VALUE PROBLEMS WITH NONHOMOGENEOUS BOUNDARY CONDITIONS , 2022 .

[4]  Christoph Schwab,et al.  Mixed hp finite element methods for Stokes and non-Newtonian flow , 1999 .

[5]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[6]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[7]  R. Kellogg,et al.  A regularity result for the Stokes problem in a convex polygon , 1976 .

[8]  Ernst P. Stephan,et al.  On the Convergence of the p-Version of the Boundary Element Galerkin Method. , 1989 .

[9]  L. Wahlbin On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .

[10]  V. Maz'ya,et al.  The first boundary value problem for classical equations of mathematical physics in domains with piecewise-smooth boundaries. I (in Russian) , 1983 .

[11]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[12]  B. Guo,et al.  The hp version of the finite element method Part 1 : The basic approximation results , 2022 .

[13]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[14]  S. C. Brenner,et al.  An Optimal-Order Multigrid Method for P1 Nonconforming Finite Elements , 1989 .

[15]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[16]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[17]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data, II: the trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions , 1989 .

[18]  E. P. Stephan,et al.  The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .

[19]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[20]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[21]  Regularite gevrey pour le probleme de dirichlet dans des domaines a singularites coniques , 1985 .

[22]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  M. Vishik,et al.  ELLIPTIC PROBLEMS WITH A PARAMETER AND PARABOLIC PROBLEMS OF GENERAL TYPE , 1964 .

[25]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .