Computing Large-Scale System Eigenvalues Most Sensitive to Parameter Changes, With Applications to Power System Small-Signal Stability

This paper describes a new algorithm, named the sensitive pole algorithm, for the automatic computation of the eigenvalues (poles) most sensitive to parameter changes in large-scale system matrices. The effectiveness and robustness of the algorithm in tracing root-locus plots is illustrated by numerical results from the small-signal stability analysis of realistic power system models. The algorithm can be used in many other fields of engineering that also study the impact of parametric changes to linear system models.

[1]  Einar Vaughn Larsen,et al.  A thyristor controlled series compensation model for power system stability analysis , 1995 .

[2]  Raphael T. Haftka,et al.  Derivatives of eigenvalues and eigenvectors of a general complex matrix , 1988 .

[3]  K. Uhlen,et al.  Application of linear analysis for stability improvements in the Nordic power transmission system , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[4]  Gerard L. G. Sleijpen,et al.  Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..

[5]  L. Hajagos An update on power system stabilization via excitation control , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[6]  N. Martins,et al.  Retuning stabilizers for the north-south Brazilian interconnection , 1999, 1999 IEEE Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.99CH36364).

[7]  S. Haley,et al.  The generalized eigenproblem: pole-zero computation , 1988, Proceedings of the IEEE.

[8]  Graham Rogers,et al.  Power System Oscillations , 1999 .

[9]  N. Martins,et al.  Determination of suitable locations for power system stabilizers and static VAr compensators for damping electromechanical oscillations in large scale power systems , 1989, Conference Papers Power Industry Computer Application Conference.

[10]  V. Ajjarapu,et al.  Critical Eigenvalues Tracing for Power System Analysis via Continuation of Invariant Subspaces and Projected Arnoldi Method , 2007 .

[11]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[12]  Shaopeng Wang,et al.  Power system damping controller design-using multiple input signals , 2000 .

[13]  N. Martins,et al.  Efficient Computation of Multivariable Transfer Function Dominant Poles Using Subspace Acceleration , 2006, IEEE Transactions on Power Systems.

[14]  Kim,et al.  Advanced Transformer Control Modeling in an Optimal Power Flow Using Newton's Method A New Eigen-Sensitivity Theory of Augmented Matrix and Its Applications to Power System Stability Analysis , 2000 .

[15]  Nelson Martins Impact of the Interactions Among Power System Controls A Summary of Presentation at the NSF / EPRI Workshop on Global Optimization , 2003 .

[16]  Pouyan Pourbeik,et al.  Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multimachine power system for enhancing dynamic performance , 1998 .

[17]  F. L. Pagola,et al.  On sensitivities, residues and participations , 1989 .

[18]  Thomas Kailath,et al.  Linear Systems , 1980 .

[19]  G. J. Rogers,et al.  Analytical investigation of factors influencing power system stabilizers performance , 1992 .

[20]  T. Smed,et al.  Feasible eigenvalue sensitivity for large power systems , 1993 .

[21]  C. Portela,et al.  Computing small-signal stability boundaries for large-scale power systems , 2002 .

[22]  A. Hamdan,et al.  Measures of Modal Controllability and Observability for First- and Second-Order Linear Systems , 1989 .

[23]  Roland W. Freund,et al.  Small-Signal Circuit Analysis and Sensitivity Computations with the PVL Algorithm , 1996 .

[24]  N. Martins,et al.  Efficient computation of transfer function dominant poles using subspace acceleration , 2006, IEEE Transactions on Power Systems.

[25]  E. Larsen,et al.  Applying Power System Stabilizers Part I: General Concepts , 1981, IEEE Transactions on Power Apparatus and Systems.

[26]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[27]  Lei Wang,et al.  A tool for small-signal security assessment of power systems , 2001, PICA 2001. Innovative Computing for Power - Electric Energy Meets the Market. 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications (Cat. No.01CH37195).

[28]  E.V. Larsen,et al.  Applying Power System Stabilizers Part II: Performance Objectives and Tuning Concepts , 1981, IEEE Transactions on Power Apparatus and Systems.

[29]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[30]  L.T.G. Lima Challenges on Small-Signal Analysis of Large Inteconnected Power Systems , 2007, 2007 IEEE Power Engineering Society General Meeting.

[31]  F. L. Pagola,et al.  On Sensitivities, Residues and Participations. Applications to Oscillatory Stability Analysis and Control , 1989, IEEE Power Engineering Review.

[32]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[33]  Nelson Martins,et al.  Computing dominant poles of power system transfer functions , 1996 .

[34]  P. Kundur,et al.  Generation rescheduling methods to improve power transfer capability constrained by small-signal stability , 2004, IEEE Transactions on Power Systems.

[35]  N. Martins,et al.  Coordinated Stabilizer Tuning in Large Power Systems Considering Multiple Operating Conditions , 2007, 2007 IEEE Power Engineering Society General Meeting.

[36]  Benjamin C. Kuo,et al.  Automatic control systems (7th ed.) , 1991 .