Polarization-sensitive Spectral-domain Optical Coherence Tomography Using a Single Line Scan Camera References and Links
暂无分享,去创建一个
Teresa C. Chen | J. Schuman | J. Izatt | M. V. van Gemert | F. Kartner | A. Fercher | R. Knighton | W. Stinson | B. Bouma | C. Hitzenberger | T. Bajraszewski | G. Tearney | J. D. de Boer | Y. Yasuno | V. Madjarova | S. Makita | B. Cense | A. Kowalczyk | M. Mujat | B. Park | M. Pircher | M. Sarunic | Teresa Chen | Choma | K. Flotte | Leitgeb | M. Itoh | Nassif | Retinal | R. K. Ghanta | T. E. Milner | M. Pierce | J. de Boer | E. A. Huang | C. P. Swanson | J. S. Lin | W. G. Schuman | M. R. Chang | T. Hee | C. A. Gregory | J. G. Puliafito | Fujimoto | C. A. F. K. Fercher | G. Hitzenberger | S. Y. Kamp | Elzaiat | J. Fujimoto | Z. Chen | Y. Zhao | J. Nelson | Park | Wojtkowski | B Cense | T. Chen | S. Yun | B. Park | Ultrahigh | C. Yang | J F De Boer | R. Leitgeb | E Götzinger | Y Yasuno | M Yamanari | Teresa C. Chen | R. Chan | D. Hee | J. G. Swanson | C E Saxer | S L Jiao | L. H. V. Wang | Jones | X R Huang | H. Bagga | D. S. Greenfield | Y. Sutoh | T. Yatagai | In | M Mujat | C. Joo | T. Akkin | W Drexler | U. Morgner
[1] J. Fujimoto,et al. Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.
[2] R. Knighton,et al. Microtubules contribute to the birefringence of the retinal nerve fiber layer. , 2005, Investigative ophthalmology & visual science.
[3] S. Yun,et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.
[4] M. V. van Gemert,et al. Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.
[5] A. Fercher,et al. Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.
[6] J. Fujimoto,et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging , 1992 .
[7] Zhongping Chen,et al. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. , 1999, Optics Letters.
[8] T. Mitsui,et al. Dynamic Range of Optical Reflectometry with Spectral Interferometry , 1999 .
[9] Teresa C. Chen,et al. Retinal nerve fiber layer thickness map determined from optical coherence tomography images. , 2005, Optics express.
[10] Teresa C. Chen,et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.
[11] Mark C. Pierce,et al. In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography , 2002 .
[12] A. Fercher,et al. In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.
[13] A. Fercher,et al. Measurement of intraocular distances by backscattering spectral interferometry , 1995 .
[14] Barry Cense,et al. Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. , 2007, Journal of biomedical optics.
[15] S. Yun,et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. , 2005, Optics express.
[16] T. Yatagai,et al. Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. , 2006, Optics express.
[17] Changhuei Yang,et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.
[18] J. Nelson,et al. High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin. , 2000, Optics letters.
[19] I Lavery,et al. Safe use of lasers. , 1978, Occupational health; a journal for occupational health nurses.
[20] Barry Cense,et al. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. , 2004, Investigative ophthalmology & visual science.
[21] J. Fujimoto,et al. Optical Coherence Tomography , 1991 .
[22] T. Yatagai,et al. Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. , 2002, Optics letters.
[23] B. Bouma,et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.
[24] Zhongping Chen,et al. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. , 1999, Optics letters.
[25] Lihong V. Wang,et al. Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. , 2002, Journal of biomedical optics.
[26] C. Hitzenberger,et al. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. , 2005, Optics express.
[27] R. Knighton,et al. Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects. , 2004, Investigative ophthalmology & visual science.
[28] Barry Cense,et al. Optical coherence tomography for retinal imaging , 2005 .