Long-Range Charge Extraction in Back-Contact Perovskite Architectures via Suppressed Recombination

[1]  R. Heeren,et al.  Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites , 2018, Advanced materials.

[2]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[3]  Eli Yablonovitch,et al.  Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[4]  U. Bach,et al.  Fabrication of Back-Contact Electrodes Using Modified Natural Lithography , 2018 .

[5]  T. Bein,et al.  Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. , 2018, ACS applied materials & interfaces.

[6]  Dane W. deQuilettes,et al.  Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion. , 2017, ACS nano.

[7]  N. Greenham,et al.  Reduced dimensionality in drift-diffusion models of back-contact solar cells and scanning photocurrent microscopy , 2017 .

[8]  Sandeep Kumar Pathak,et al.  Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals , 2017 .

[9]  R. Friend,et al.  Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films , 2017 .

[10]  U. Bach,et al.  Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells , 2017, Nature Communications.

[11]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[12]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[13]  Felix Deschler,et al.  Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy , 2017, Nature Communications.

[14]  Satyaprasad P. Senanayak,et al.  Understanding charge transport in lead iodide perovskite thin-film field-effect transistors , 2017, Science Advances.

[15]  Thomas Kirchartz,et al.  Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence , 2016 .

[16]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[17]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[18]  Cherie R. Kagan,et al.  Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals. , 2016, The journal of physical chemistry letters.

[19]  David S. Ginger,et al.  Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation , 2016 .

[20]  Kamaruzzaman Sopian,et al.  Silicon back contact solar cell configuration: A pathway towards higher efficiency , 2016 .

[21]  David T. Limmer,et al.  Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. , 2016, Nano letters.

[22]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[23]  Shannon A. Bonke,et al.  Back-contacted hybrid organic–inorganic perovskite solar cells , 2016 .

[24]  Oskar J. Sandberg,et al.  Relating Charge Transport, Contact Properties, and Recombination to Open-Circuit Voltage in Sandwich-Type Thin-Film Solar Cells , 2016 .

[25]  Luis M. Pazos-Outón,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[26]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[27]  P. Kamat,et al.  Understanding the Implication of Carrier Diffusion Length in Photovoltaic Cells. , 2015, The journal of physical chemistry letters.

[28]  R. Friend,et al.  Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites , 2015, Nature Communications.

[29]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[30]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[31]  N. Wang,et al.  Interfacial Control Toward Efficient and Low‐Voltage Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[32]  Yossi Rosenwaks,et al.  The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells , 2015, Scientific Reports.

[33]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[34]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[35]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[36]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[37]  D. Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[38]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[39]  Ujjwal Das,et al.  Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation , 2007 .

[40]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[41]  D. Cahen,et al.  Doping of copper indium selenide (CuInSe2) crystals: evidence for influence of thermal defects , 1989 .

[42]  Chang,et al.  Unusually low surface-recombination velocity on silicon and germanium surfaces. , 1986, Physical review letters.

[43]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[44]  B. Miller,et al.  Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers , 1973 .

[45]  G. E. Stillman,et al.  Electron Mobility in High‐Purity GaAs , 1970 .

[46]  T. Wilson,et al.  Theory of optical beam induced current images of defects in semiconductors , 1987 .

[47]  W. R. Runyan Semiconductor Measurements and Instrumentation , 1975 .