On the tail index of a heavy tailed distribution

This paper proposes some new estimators for the tail index of a heavy tailed distribution when only a few largest values are observed within blocks. These estimators are proved to be asymptotically normal under suitable conditions, and their Edgeworth expansions are obtained. Empirical likelihood method is also employed to construct confidence intervals for the tail index. The comparison for the confidence intervals based on the normal approximation and the empirical likelihood method is made in terms of coverage probability and length of the confidence intervals. The simulation study shows that the empirical likelihood method outperforms the normal approximation method.

[1]  U. Stadtmüller,et al.  Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[2]  Song Xi Chen,et al.  Empirical Likelihood Confidence Intervals for Linear Regression Coefficients , 1994 .

[3]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[4]  Song Xi Chen,et al.  Empirical likelihood confidence intervals for local linear smoothers , 2000 .

[5]  J. N. K. Rao,et al.  Empirical likelihood-based inference in linear errors-in-covariables models with validation data , 2002 .

[6]  Gang Li,et al.  Empirical Likelihood Semiparametric Regression Analysis under Random Censorship , 2002 .

[7]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[8]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[9]  Liang Peng,et al.  Estimating the First‐ and Second‐Order Parameters of a Heavy‐Tailed Distribution , 2004 .

[10]  Peter Hall,et al.  Methodology and algorithms of empirical likelihood , 1990 .

[11]  A. Račkauskas,et al.  More on P-Stable Convex Sets in Banach Spaces , 2000 .

[12]  Bing-Yi Jing,et al.  Empirical Likelihood for Censored Linear Regression , 2001 .

[13]  Liang Peng,et al.  Confidence regions for high quantiles of a heavy tailed distribution , 2006, math/0611278.

[14]  Min Tsao,et al.  A new method of calibration for the empirical loglikelihood ratio , 2004 .

[15]  Liang Peng,et al.  Likelihood Based Confidence Intervals for the Tail Index , 2002 .

[16]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[17]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[18]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[19]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[20]  Peter Hall,et al.  Smoothed empirical likelihood confidence intervals for quantiles , 1993 .

[21]  L. Peng,et al.  A NEW CALIBRATION METHOD OF CONSTRUCTING EMPIRICAL LIKELIHOOD‐BASED CONFIDENCE INTERVALS FOR THE TAIL INDEX , 2006 .

[22]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[23]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[24]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[25]  Holger Drees,et al.  On Smooth Statistical Tail Functionals , 1998 .

[26]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[27]  Vygantas Paulauskas,et al.  A New Estimator for a Tail Index , 2003 .

[28]  Bing-Yi Jing,et al.  Empirical likelihood for partial linear models , 2003 .

[29]  Johan Segers,et al.  Testing the Gumbel hypothesis by Galton's ratio , 2000 .

[30]  V. Paulauskas,et al.  On the Estimation of a Changepoint in a Tail Index , 2005 .

[31]  Narayanaswamy Balakrishnan,et al.  Order statistics and inference , 1991 .

[32]  Song Xi Chen,et al.  Empirical likelihood confidence intervals for nonparametric density estimation , 1996 .

[33]  Bing-Yi Jing,et al.  EMPIRICAL LIKELIHOOD FOR COX REGRESSION MODEL UNDER RANDOM CENSORSHIP , 2001 .

[34]  Bing-Yi Jing,et al.  Censored Partial Linear Models and Empirical Likelihood , 2001 .

[35]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .