A regionalisation approach for rainfall based on extremal dependence

To mitigate the risk posed by extreme rainfall events, we require statistical models that reliably capture extremes in continuous space with dependence. However, assuming a stationary dependence structure in such models is often erroneous, particularly over large geographical domains. Furthermore, there are limitations on the ability to fit existing models, such as max-stable processes, to a large number of locations. To address these modelling challenges, we present a regionalisation method that partitions stations into regions of similar extremal dependence using clustering. To demonstrate our regionalisation approach, we consider a study region of Australia and discuss the results with respect to known climate and topographic features. To visualise and evaluate the effectiveness of the partitioning, we fit max-stable models to each of the regions. This work serves as a prelude to how one might consider undertaking a project where spatial dependence is non-stationary and is modelled on a large geographical scale.

[1]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[2]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[3]  Mathieu Vrac,et al.  Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France , 2013 .

[4]  P. Naveau,et al.  Characterization of homogeneous regions for regional peaks-over-threshold modeling of heavy precipitation , 2016 .

[5]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[6]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[7]  Clément Dombry,et al.  Regular conditional distributions of continuous max-infinitely divisible random fields , 2013 .

[8]  A. Davison,et al.  Optimal regionalization of extreme value distributions for flood estimation , 2018 .

[9]  N. Nicholls,et al.  TRENDS IN EXTREME RAINFALL INDICES FOR AN UPDATED HIGH QUALITY DATA SET FOR AUSTRALIA, 1910-1998 , 2000 .

[10]  D. Jones,et al.  High-quality spatial climate data-sets for Australia , 2009 .

[11]  Daniel Müllner,et al.  Modern hierarchical, agglomerative clustering algorithms , 2011, ArXiv.

[12]  M. Wheeler,et al.  On the Remote Drivers of Rainfall Variability in Australia , 2009 .

[13]  R. L. Smith EXTREME VALUES, POINT PROCESSES AND REGULAR VARIATION (Applied Probability 4) , 1988 .

[14]  Raphael Huser,et al.  Local Likelihood Estimation of Complex Tail Dependence Structures, Applied to U.S. Precipitation Extremes , 2017, Journal of the American Statistical Association.

[15]  J. R. Wallis,et al.  Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .

[16]  F. Zwiers,et al.  Global increasing trends in annual maximum daily precipitation , 2013 .

[17]  Eric Gilleland,et al.  Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe , 2015 .

[18]  Malika Charrad,et al.  NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set , 2014 .

[19]  P. Naveau,et al.  Partitioning into hazard subregions for regional peaks‐over‐threshold modeling of heavy precipitation , 2017 .

[20]  J. Arblaster,et al.  Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5 , 2017 .

[21]  Fionn Murtagh,et al.  Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? , 2011, Journal of Classification.

[22]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Russell S. Vose,et al.  Comprehensive Automated Quality Assurance of Daily Surface Observations , 2010 .

[24]  Daniel Cooley,et al.  Modelling pairwise dependence of maxima in space , 2009 .

[25]  Marc G. Genton,et al.  Non-Stationary Dependence Structures for Spatial Extremes , 2014, 1411.3174.

[26]  Christian Rohrbeck,et al.  Bayesian spatial clustering of extremal behaviour for hydrological variables. , 2019 .

[27]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[28]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[29]  Matthew J. Menne,et al.  Strategies for evaluating quality assurance procedures , 2008 .

[30]  K. Saunders An investigation of Australian rainfall using extreme value theory , 2018 .

[31]  Harvey Stern,et al.  Objective classification of Australian climates , 1999 .

[32]  D. Camilo,et al.  Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes , 2017 .

[33]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[34]  Richard L. Smith,et al.  MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .

[35]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[36]  Marc G. Genton,et al.  Full likelihood inference for max‐stable data , 2017, Stat.

[37]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[38]  R. Samworth Optimal weighted nearest neighbour classifiers , 2011, 1101.5783.

[39]  D. Camilo,et al.  Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets , 2017, 1709.01198.

[40]  Multivariate Extreme Value Analysis , 2015 .

[41]  Martin Schlather,et al.  Statistical post-processing of forecasts for extremes using bivariate brown-resnick processes with an application to wind gusts , 2013 .

[42]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[43]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[44]  P. Taylor,et al.  The spatial distribution of rainfall extremes and the influence of El Nino Southern Oscillation , 2017 .

[45]  Jun Yan,et al.  Extreme Value Modeling and Risk Analysis : Methods and Applications , 2015 .

[46]  P. Naveau,et al.  Variograms for spatial max-stable random fields , 2006 .

[47]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[48]  Stefano Castruccio,et al.  High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes , 2014, 1411.0086.

[49]  P. Whetton,et al.  Climate change in Australia , 2015 .

[50]  P. Whetton,et al.  Influence of climate variability on seasonal extremes over Australia , 2013 .

[51]  N. Bindoff,et al.  Climate Futures for Tasmania: General climate impacts Technical Report , 2010 .

[52]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.