A regionalisation approach for rainfall based on extremal dependence
暂无分享,去创建一个
A. G. Stephenson | K. R. Saunders | D. J. Karoly | D. Karoly | A. Stephenson | K. Saunders | Alec Stephenson | David J. Karoly
[1] A. Davison,et al. Statistical Modeling of Spatial Extremes , 2012, 1208.3378.
[2] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[3] Mathieu Vrac,et al. Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France , 2013 .
[4] P. Naveau,et al. Characterization of homogeneous regions for regional peaks-over-threshold modeling of heavy precipitation , 2016 .
[5] Eric P. Smith,et al. An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.
[6] Martin Schlather,et al. Models for Stationary Max-Stable Random Fields , 2002 .
[7] Clément Dombry,et al. Regular conditional distributions of continuous max-infinitely divisible random fields , 2013 .
[8] A. Davison,et al. Optimal regionalization of extreme value distributions for flood estimation , 2018 .
[9] N. Nicholls,et al. TRENDS IN EXTREME RAINFALL INDICES FOR AN UPDATED HIGH QUALITY DATA SET FOR AUSTRALIA, 1910-1998 , 2000 .
[10] D. Jones,et al. High-quality spatial climate data-sets for Australia , 2009 .
[11] Daniel Müllner,et al. Modern hierarchical, agglomerative clustering algorithms , 2011, ArXiv.
[12] M. Wheeler,et al. On the Remote Drivers of Rainfall Variability in Australia , 2009 .
[13] R. L. Smith. EXTREME VALUES, POINT PROCESSES AND REGULAR VARIATION (Applied Probability 4) , 1988 .
[14] Raphael Huser,et al. Local Likelihood Estimation of Complex Tail Dependence Structures, Applied to U.S. Precipitation Extremes , 2017, Journal of the American Statistical Association.
[15] J. R. Wallis,et al. Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .
[16] F. Zwiers,et al. Global increasing trends in annual maximum daily precipitation , 2013 .
[17] Eric Gilleland,et al. Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe , 2015 .
[18] Malika Charrad,et al. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set , 2014 .
[19] P. Naveau,et al. Partitioning into hazard subregions for regional peaks‐over‐threshold modeling of heavy precipitation , 2017 .
[20] J. Arblaster,et al. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5 , 2017 .
[21] Fionn Murtagh,et al. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? , 2011, Journal of Classification.
[22] Sahibsingh A. Dudani. The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.
[23] Russell S. Vose,et al. Comprehensive Automated Quality Assurance of Daily Surface Observations , 2010 .
[24] Daniel Cooley,et al. Modelling pairwise dependence of maxima in space , 2009 .
[25] Marc G. Genton,et al. Non-Stationary Dependence Structures for Spatial Extremes , 2014, 1411.3174.
[26] Christian Rohrbeck,et al. Bayesian spatial clustering of extremal behaviour for hydrological variables. , 2019 .
[27] Robert Tibshirani,et al. Estimating the number of clusters in a data set via the gap statistic , 2000 .
[28] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[29] Matthew J. Menne,et al. Strategies for evaluating quality assurance procedures , 2008 .
[30] K. Saunders. An investigation of Australian rainfall using extreme value theory , 2018 .
[31] Harvey Stern,et al. Objective classification of Australian climates , 1999 .
[32] D. Camilo,et al. Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes , 2017 .
[33] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[34] Richard L. Smith,et al. MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .
[35] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[36] Marc G. Genton,et al. Full likelihood inference for max‐stable data , 2017, Stat.
[37] Terrence J. Sejnowski,et al. Unsupervised Learning , 2018, Encyclopedia of GIS.
[38] R. Samworth. Optimal weighted nearest neighbour classifiers , 2011, 1101.5783.
[39] D. Camilo,et al. Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets , 2017, 1709.01198.
[40] Multivariate Extreme Value Analysis , 2015 .
[41] Martin Schlather,et al. Statistical post-processing of forecasts for extremes using bivariate brown-resnick processes with an application to wind gusts , 2013 .
[42] S. Coles,et al. An Introduction to Statistical Modeling of Extreme Values , 2001 .
[43] L. de Haan,et al. A Spectral Representation for Max-stable Processes , 1984 .
[44] P. Taylor,et al. The spatial distribution of rainfall extremes and the influence of El Nino Southern Oscillation , 2017 .
[45] Jun Yan,et al. Extreme Value Modeling and Risk Analysis : Methods and Applications , 2015 .
[46] P. Naveau,et al. Variograms for spatial max-stable random fields , 2006 .
[47] Fionn Murtagh,et al. A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..
[48] Stefano Castruccio,et al. High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes , 2014, 1411.0086.
[49] P. Whetton,et al. Climate change in Australia , 2015 .
[50] P. Whetton,et al. Influence of climate variability on seasonal extremes over Australia , 2013 .
[51] N. Bindoff,et al. Climate Futures for Tasmania: General climate impacts Technical Report , 2010 .
[52] S. Padoan,et al. Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.