ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at ? ~ 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R 500 is ~20% at ? = 3000, thus clusters interiors (r < R 500) dominate the power spectrum amplitude at these angular scales.

[1]  Martin White,et al.  Dark matter halo abundances, clustering and assembly histories at high redshift , 2007, 0706.0208.

[2]  Y. Jing,et al.  ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS , 2008, 0811.0828.

[3]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES , 2011, 1106.5505.

[4]  Power spectrum of the Sunyaev-Zel’dovich effect , 1999, astro-ph/9912180.

[5]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[6]  J. Bond,et al.  The Peak-Patch Picture of Cosmic Catalogs. I. Algorithms , 1996 .

[7]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[8]  R. B. Barreiro,et al.  Planck early results - X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters , 2011, 1101.2043.

[9]  M. White,et al.  Hydrodynamic Simulations of the Sunyaev-Zeldovich Effect(s) , 2000, astro-ph/0008133.

[10]  Concentrations of Dark Halos from Their Assembly Histories , 2001, astro-ph/0108151.

[11]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[12]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[13]  J. Huchra,et al.  Groups of galaxies. I. Nearby groups , 1982 .

[14]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[15]  J. Bond,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/26/04 , 2022 .

[16]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[17]  J. Bond,et al.  The Kinetic Sunyaev-Zel'dovich Effect from Radiative Transfer Simulations of Patchy Reionization , 2007 .

[18]  G. Efstathiou,et al.  A Simple Empirically Motivated Template for the Unresolved Thermal Sunyaev-Zeldovich Effect , 2011, 1106.3208.

[19]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. I. THE INFLUENCE OF FEEDBACK, NON-THERMAL PRESSURE, AND CLUSTER SHAPES ON Y–M SCALING RELATIONS , 2011, 1109.3709.

[20]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[21]  Peter A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY , 2010, 1009.0847.

[22]  P. A. R. Ade,et al.  IMPROVED CONSTRAINTS ON COSMIC MICROWAVE BACKGROUND SECONDARY ANISOTROPIES FROM THE COMPLETE 2008 SOUTH POLE TELESCOPE DATA , 2010, 1012.4788.

[23]  Harvard,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[24]  S. More,et al.  THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION , 2011, 1103.0005.

[25]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[26]  The Sunyaev Zel'dovich effect: simulation and observation , 2002, astro-ph/0201375.

[27]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[28]  D. Weinberg,et al.  The Effects of Gasdynamics, Cooling, Star Formation, and Numerical Resolution in Simulations of Cluster Formation , 1999, astro-ph/9907097.

[29]  J. R. Bond,et al.  Cosmological Results from Five Years of 30 GHz CMB Intensity Measurements with the Cosmic Background Imager , 2009, 0901.4540.

[30]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[31]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[32]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[33]  J. Bond,et al.  Current models of the observable consequences of cosmic reionization and their detectability , 2007, astro-ph/0702099.

[34]  S. Cole,et al.  Sunyaev–Zel'dovich fluctuations in the cold dark matter scenario , 1988 .

[35]  Todd A. Thompson,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005 .

[36]  K. Dawson,et al.  Final Results from the BIMA CMB Anisotropy Survey and Search for a Signature of the Sunyaev-Zel'dovich Effect , 2006, astro-ph/0602413.

[37]  O. Zahn,et al.  MODELING EXTRAGALACTIC FOREGROUNDS AND SECONDARIES FOR UNBIASED ESTIMATION OF COSMOLOGICAL PARAMETERS FROM PRIMARY COSMIC MICROWAVE BACKGROUND ANISOTROPY , 2011, 1102.5195.

[38]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[39]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[40]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[41]  A SIMPLE AND ACCURATE MODEL FOR INTRACLUSTER GAS , 2005, astro-ph/0504334.

[42]  J. Carlstrom,et al.  Understanding Cluster Gas Evolution and Fine-Scale Cosmic Microwave Background Anisotropy with Deep Sunyaev-Zeldovich Effect Surveys , 2001, astro-ph/0105229.

[43]  D. Nagai,et al.  IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.

[44]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[45]  O. Zahn,et al.  SHARPENING THE PRECISION OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2009, 0903.5322.

[46]  Deprojecting Sunyaev-Zeldovich Statistics , 2000, astro-ph/0007462.

[47]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[48]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[49]  Uros Seljak,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002 .

[50]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[51]  Hydrodynamical simulations of the Sunyaev-Zel'dovich effect , 1999, astro-ph/9907224.

[52]  Y. Suto,et al.  Anisotropies in the Microwave Background Due to the Sunyaev-Zel'dovich Effect from Virialized Objects at High Redshifts , 1993 .

[53]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[54]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[55]  Matthias Bartelmann,et al.  Detecting Sunyaev–Zel'dovich clusters with Planck – II. Foreground components and optimized filtering schemes , 2004, astro-ph/0407090.

[56]  Detecting Sunyaev-Zel'dovich clusters with Planck - I. Construction of all-sky thermal and kinetic SZ maps , 2004, astro-ph/0407089.

[57]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[58]  M. Donahue,et al.  THE PRESSURE PROFILES OF HOT GAS IN LOCAL GALAXY GROUPS , 2010, 1012.0312.

[59]  Non-Gaussian Aspects of Thermal and Kinetic Sunyaev-Zel'dovich Effects , 2001, astro-ph/0105063.

[60]  E. Komatsu,et al.  Universal gas density and temperature profile , 2001, astro-ph/0106151.

[61]  J. M. Gelb,et al.  Cosmological N‐Body Simulations , 1991 .

[62]  Y. Zeldovich,et al.  Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.

[63]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[64]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[65]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[66]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[67]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . XI . Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations , 2011 .

[68]  The probability distribution function of the Sunyaev-Zel'dovich power spectrum: An analytical approach , 2007, astro-ph/0701879.

[69]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[70]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[71]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[72]  P. A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < ℓ < 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz , 2010, 1001.2934.

[73]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[74]  E. Komatsu,et al.  Sunyaev-Zeldovich Fluctuations from Spatial Correlations between Clusters of Galaxies , 1999, The Astrophysical journal.

[75]  Adrian T. Lee,et al.  CONSTRAINTS ON THE HIGH-ℓ POWER SPECTRUM OF MILLIMETER-WAVE ANISOTROPIES FROM APEX-SZ , 2009, 0904.3939.

[76]  P. A. R. Ade,et al.  MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.