Zero and negative masses in finite element vibration and transient analysis
暂无分享,去创建一个
[1] Isaac Fried. Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number , 1972 .
[2] T. Belytschko,et al. Stability of explicit‐implicit mesh partitions in time integration , 1978 .
[3] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[4] George J. Fix. EFFECTS OF QUADRATURE ERRORS IN FINITE ELEMENT APPROXIMATION OF STEADY STATE, EIGENVALUE AND PARABOLIC PROBLEMS , 1972 .
[5] G. Peters,et al. $Ax = \lambda Bx$ and the Generalized Eigenproblem , 1970 .
[6] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[7] O. Zienkiewicz,et al. A note on mass lumping and related processes in the finite element method , 1976 .
[8] I. Fried. Optimal gradient minimization scheme for finite element eigenproblems , 1972 .
[9] Thomas J. R. Hughes,et al. IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .
[10] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[11] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[12] R. Cook,et al. Concepts and Applications of Finite Element Analysis , 1974 .
[13] Thomas J. R. Hughes,et al. Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .
[14] H. Saunders,et al. Finite element procedures in engineering analysis , 1982 .
[15] Isaac Fried,et al. Finite element mass matrix lumping by numerical integration with no convergence rate loss , 1975 .