Mechanisms of mitophagy

[1]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[2]  A. Schapira,et al.  Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. , 2010, Human molecular genetics.

[3]  Benedikt Westermann,et al.  Mitochondrial fusion and fission in cell life and death , 2010, Nature Reviews Molecular Cell Biology.

[4]  R. Youle,et al.  p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both , 2010, Autophagy.

[5]  S. Weber,et al.  The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations , 2010, Autophagy.

[6]  Daniel J. Klionsky,et al.  An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis , 2010, The Journal of cell biology.

[7]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[8]  D. Adams,et al.  PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice , 2010, Proceedings of the National Academy of Sciences.

[9]  Nobutaka Hattori,et al.  p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria , 2010, Genes to cells : devoted to molecular & cellular mechanisms.

[10]  D. Rubinsztein,et al.  Plasma membrane contributes to the formation of pre-autophagosomal structures , 2010, Nature Cell Biology.

[11]  G. Dorn,et al.  Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming* , 2010, The Journal of Biological Chemistry.

[12]  R. Youle,et al.  Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells , 2010, Proceedings of the National Academy of Sciences.

[13]  K. Lim,et al.  Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy , 2010, The Journal of cell biology.

[14]  D. Rubinsztein,et al.  A comprehensive glossary of autophagy-related molecules and processes , 2010, Autophagy.

[15]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[16]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[17]  Angela C. Poole,et al.  The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway , 2010, PloS one.

[18]  F. Inagaki,et al.  Atg8‐family interacting motif crucial for selective autophagy , 2010, FEBS letters.

[19]  N. Hattori,et al.  PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy , 2010, FEBS letters.

[20]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[21]  D. Klionsky,et al.  A genomic screen for yeast mutants defective in mitophagy , 2010, Autophagy.

[22]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[23]  L. Chin,et al.  Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. , 2010, Human molecular genetics.

[24]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[25]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[26]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[27]  D. Ferguson,et al.  Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo , 2009, Proceedings of the National Academy of Sciences.

[28]  Y. Ohsumi,et al.  Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. , 2009, Developmental cell.

[29]  D. Klionsky,et al.  Atg32 is a mitochondrial protein that confers selectivity during mitophagy. , 2009, Developmental cell.

[30]  J. Cleveland,et al.  Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. , 2009, Blood.

[31]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[32]  Y. Thielmann,et al.  Nix directly binds to GABARAP: A possible crosstalk between apoptosis and autophagy , 2009, Autophagy.

[33]  N. Hattori,et al.  Parkin stabilizes PINK1 through direct interaction. , 2009, Biochemical and biophysical research communications.

[34]  Gwang Lee,et al.  Molecular interaction between parkin and PINK1 in mammalian neuronal cells , 2009, Molecular and Cellular Neuroscience.

[35]  YongSung Kim,et al.  PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. , 2008, Biochemical and biophysical research communications.

[36]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[37]  Hansong Deng,et al.  The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[38]  Gareth Griffiths,et al.  Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum , 2008, The Journal of cell biology.

[39]  C. Thompson,et al.  Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. , 2008, Blood.

[40]  H. Sandoval,et al.  Essential role for Nix in autophagic maturation of erythroid cells , 2008, Nature.

[41]  William Lin,et al.  Characterization of PINK1 processing, stability, and subcellular localization , 2008, Journal of neurochemistry.

[42]  M. Beal,et al.  Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery , 2008, Proceedings of the National Academy of Sciences.

[43]  Angela C. Poole,et al.  The PINK1/Parkin pathway regulates mitochondrial morphology , 2008, Proceedings of the National Academy of Sciences.

[44]  A. Schapira Mitochondria in the aetiology and pathogenesis of Parkinson's disease , 2008, The Lancet Neurology.

[45]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[46]  D. Turnbull,et al.  Nature of mitochondrial DNA deletions in substantia nigra neurons. , 2008, American journal of human genetics.

[47]  J. Opferman,et al.  NIX is required for programmed mitochondrial clearance during reticulocyte maturation , 2007, Proceedings of the National Academy of Sciences.

[48]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[49]  Y. Ohsumi,et al.  Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion , 2007, Cell.

[50]  A. Pestronk,et al.  Familial parkinsonism and ophthalmoplegia from a mutation in the mitochondrial DNA helicase twinkle. , 2007, Archives of neurology.

[51]  S. Rodríguez-Enríquez,et al.  Selective degradation of mitochondria by mitophagy. , 2007, Archives of biochemistry and biophysics.

[52]  K. Nowikovsky,et al.  Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy , 2007, Cell Death and Differentiation.

[53]  Daniel J. Klionsky,et al.  Aup1p, a Yeast Mitochondrial Protein Phosphatase Homolog, Is Required for Efficient Stationary Phase Mitophagy and Cell Survival* , 2007, Journal of Biological Chemistry.

[54]  M. Beal,et al.  Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[56]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[57]  C. Geula,et al.  Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons , 2006, Nature Genetics.

[58]  Robert W. Taylor,et al.  High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease , 2006, Nature Genetics.

[59]  C. Klein,et al.  The genetics of Parkinson disease: implications for neurological care , 2006, Nature Clinical Practice Neurology.

[60]  M. Gouy,et al.  Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. , 2005, Molecular biology and evolution.

[61]  Stéphen Manon,et al.  Uth1p Is Involved in the Autophagic Degradation of Mitochondria* , 2004, Journal of Biological Chemistry.

[62]  L. Peltonen,et al.  Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study , 2004, The Lancet.

[63]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[64]  M. Raffeld,et al.  The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. , 2003, Blood.

[65]  C. Croce,et al.  Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–q27 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. C. Greene,et al.  Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Tolkovsky,et al.  Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? , 2002, Biochimie.

[68]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[69]  T. Dawson,et al.  The role of parkin in familial and sporadic Parkinson's disease , 2010, Movement disorders : official journal of the Movement Disorder Society.

[70]  R. Roine,et al.  A CLINICAL AND MOLECULAR GENETIC STUDY , 2010 .

[71]  Y. Sakai,et al.  Pexophagy in Pichia pastoris. , 2008, Methods in enzymology.

[72]  C. Duve,et al.  Functions of lysosomes. , 1966, Annual review of physiology.

[73]  J. Lee,et al.  Rhomboid-7 and HtrA 2 / Omi act in a common pathway with the Parkinson ’ s disease factors Pink 1 and Parkin , 2022 .