Research progress regarding the role of halophilic and halotolerant microorganisms in the eco-environmental sustainability and conservation

[1]  M. Enache,et al.  Brackish and Hypersaline Lakes as Potential Reservoir for Enzymes Involved in Decomposition of Organic Materials on Frescoes , 2022, Fermentation.

[2]  M. Enache,et al.  The Susceptibility to Biodegradation of Some Consolidants Used in the Restoration of Mural Paintings , 2022, Applied Sciences.

[3]  S. McLellan,et al.  Halophilic bacteria in a Lake Michigan drainage basin as potential biological indicators of chloride-impacted freshwaters. , 2022, Science of the Total Environment.

[4]  M. Enache,et al.  Characterization of Some Salt-Tolerant Bacterial Hydrolases with Potential Utility in Cultural Heritage Bio-Cleaning , 2022, Microorganisms.

[5]  Song-Gun Kim,et al.  Halorubrum salinarum sp. nov., an extremely halophilic archaeon isolated from a saturated brine pond of a saltern. , 2022, International journal of systematic and evolutionary microbiology.

[6]  Likai Zhu,et al.  Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. , 2021, The Science of the total environment.

[7]  Junjie Qiu,et al.  Microbial halophilic lipases: A review , 2021, Journal of basic microbiology.

[8]  B. Nielsen,et al.  Analysis of Gene Expression Changes in Plants Grown in Salty Soil in Response to Inoculation with Halophilic Bacteria , 2021, International journal of molecular sciences.

[9]  J. Hou,et al.  Antibiotic resistance genes attenuation in anaerobic microorganisms during iron uptake from zero valent iron: An iron-dependent form of homeostasis and roles as regulators. , 2021, Water research.

[10]  Z. Rengel,et al.  Environmental salinization processes: Detection, implications & solutions. , 2021, The Science of the total environment.

[11]  E. Zanardini,et al.  Biocleaning on Cultural Heritage: new frontiers of microbial biotechnologies , 2021, Journal of applied microbiology.

[12]  Ruby Singh,et al.  Green biomimetic synthesis of Ag–TiO2 nanocomposite using Origanum majorana leaf extract under sonication and their biological activities , 2021, Bioresources and Bioprocessing.

[13]  N. Bolan,et al.  Soil salinity under climate change: Challenges for sustainable agriculture and food security. , 2020, Journal of environmental management.

[14]  B. Xing,et al.  Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy , 2020, Critical Reviews in Environmental Science and Technology.

[15]  R. Prince,et al.  Occurrence and biodegradation of hydrocarbons at high salinities. , 2020, The Science of the total environment.

[16]  Ajay K. Singh Soil salinization management for sustainable development: A review. , 2020, Journal of environmental management.

[17]  C. Cockell,et al.  A Systematic Study of the Limits of Life in Mixed Ion Solutions: Physicochemical Parameters Do Not Predict Habitability , 2020, Frontiers in Microbiology.

[18]  A. Teske 10 Years of Extreme Microbiology: An Interim Reflection and Future Prospects , 2020, Frontiers in Microbiology.

[19]  S. Kolida,et al.  An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119 , 2020, Journal of Functional Foods.

[20]  N. Arora,et al.  Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils , 2019, Front. Microbiol..

[21]  Abeer Elhagrassy MODIFICATION OF EAPC-XYL BY PSEUDOMONAS LIPASES BACTERIA TO REMOVE ACRYLIC FROM THE MURAL OIL PAINTINGS , 2019, SHEDET, ANNUAL PEER-REVIEWED JOURNAL ISSUED BY THE FACULTY OF ARCHAEOLOGY, FAYOUM UNIVERSITY.

[22]  I. Ahmad,et al.  Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10 , 2019, Applied Soil Ecology.

[23]  E. Bremer,et al.  Responses of Microorganisms to Osmotic Stress. , 2019, Annual review of microbiology.

[24]  J. Lowman,et al.  Salt-Tolerant Halophyte Rhizosphere Bacteria Stimulate Growth of Alfalfa in Salty Soil , 2019, Front. Microbiol..

[25]  Fu Wang,et al.  Antibiotic resistance genes attenuated with salt accumulation in saline soil. , 2019, Journal of hazardous materials.

[26]  I. Ali,et al.  Purification and Characterization of Cellulase from Obligate Halophilic Aspergillus flavus (TISTR 3637) and Its Prospects for Bioethanol Production , 2019, Applied Biochemistry and Biotechnology.

[27]  I. Sampedro,et al.  Chemotaxis of halophilic bacterium Halomonas anticariensis FP35 towards the environmental pollutants phenol and naphthalene. , 2019, The Science of the total environment.

[28]  V. Bauerová-Hlinková,et al.  Biocleaning of historical documents: The use and characterization of bacterial enzymatic resources , 2019, International Biodeterioration & Biodegradation.

[29]  A. Poli,et al.  Bio-cleaning of nitrate salt efflorescence on stone samples using extremophilic bacteria , 2019, Scientific Reports.

[30]  Thanh Nguyen Chu,et al.  Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana , 2019, BMC Research Notes.

[31]  Satyawati Sharma,et al.  1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress , 2018, Scientific Reports.

[32]  Ibrahim A. Alaraidh,et al.  Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. , 2018, Plant physiology and biochemistry : PPB.

[33]  Cristóbal N. Aguilar,et al.  Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach , 2018, Heliyon.

[34]  Guangya Zhang,et al.  Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. , 2018, International journal of biological macromolecules.

[35]  B. Chaudhari,et al.  Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. , 2018, International journal of biological macromolecules.

[36]  B. Ali,et al.  Halotolerant Bacterial Diversity Associated with Suaeda fruticosa (L.) Forssk. Improved Growth of Maize under Salinity Stress , 2018, Agronomy.

[37]  A. Banik,et al.  Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. , 2018, The Science of the total environment.

[38]  Fuli Zhang,et al.  Growth-Promoting Ability of Rhodopseudomonas palustris G5 and Its Effect on Induced Resistance in Cucumber Against Salt Stress , 2018, Journal of Plant Growth Regulation.

[39]  N. Gunde-Cimerman,et al.  Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. , 2018, FEMS microbiology reviews.

[40]  Sankalp Misra,et al.  Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. , 2017, Microbiological research.

[41]  K. Dumorné,et al.  Extremozymes: A Potential Source for Industrial Applications. , 2017, Journal of microbiology and biotechnology.

[42]  M. Faramarzi,et al.  Thermoalkalophilic lipase from an extremely halophilic bacterial strain Bacillus atrophaeus FSHM2: Purification, biochemical characterization and application , 2017 .

[43]  T. Arakawa,et al.  Unique Features of Halophilic Proteins. , 2016, Current protein and peptide science.

[44]  F. Huyop,et al.  Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments , 2016, World Journal of Microbiology and Biotechnology.

[45]  A. Ventosa,et al.  Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland. , 2016, International journal of systematic and evolutionary microbiology.

[46]  F. Orhan Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum) , 2016, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[47]  H. Park,et al.  Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable , 2016, Antonie van Leeuwenhoek.

[48]  Qiyuan Wang,et al.  Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. , 2016, Functional plant biology : FPB.

[49]  S. A. Fazeli,et al.  Halosiccatus urmianus gen. nov., sp. nov., a haloarchaeon from a salt lake. , 2016, International journal of systematic and evolutionary microbiology.

[50]  F. Baluška,et al.  A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. , 2016, Journal of plant physiology.

[51]  H. Saud,et al.  Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes , 2016, BioMed research international.

[52]  Su-jin Kim,et al.  Halobacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. , 2015, International journal of systematic and evolutionary microbiology.

[53]  A. Makhdoumi,et al.  Halovarius luteus gen. nov., sp. nov., an extremely halophilic archaeon from a salt lake. , 2015, International journal of systematic and evolutionary microbiology.

[54]  Wei He,et al.  Halomonas heilongjiangensis sp. nov., a novel moderately halophilic bacterium isolated from saline and alkaline soil , 2015, Antonie van Leeuwenhoek.

[55]  M. Fardeau,et al.  Marinobacter piscensis sp. nov., a Moderately Halophilic Bacterium Isolated from Salty Food in Tunisia , 2015, Current Microbiology.

[56]  Marcelo Loureiro Garcia,et al.  Implications of stillage land disposal: a critical review on the impacts of fertigation. , 2014, Journal of environmental management.

[57]  Trevor C. Charles,et al.  Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. , 2014, Plant physiology and biochemistry : PPB.

[58]  N. Arora,et al.  Multifunctional Exopolysaccharides from Pseudomonas aeruginosa PF23 Involved in Plant Growth Stimulation, Biocontrol and Stress Amelioration in Sunflower Under Saline Conditions , 2014, Current Microbiology.

[59]  B. E. Barragán-Huerta,et al.  Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review , 2014, Environmental Science and Pollution Research.

[60]  Xin Li,et al.  Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production , 2014, Folia Microbiologica.

[61]  F. Rodríguez-Valera,et al.  From Metagenomics to Pure Culture: Isolation and Characterization of the Moderately Halophilic Bacterium Spiribacter salinus gen. nov., sp. nov , 2014, Applied and Environmental Microbiology.

[62]  G. Ranalli,et al.  The safety of biocleaning technologies for cultural heritage , 2014, Front. Microbiol..

[63]  D. Arbain,et al.  Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses. , 2014, Bioresource technology.

[64]  B. Glick Bacteria with ACC deaminase can promote plant growth and help to feed the world. , 2014, Microbiological research.

[65]  C. Evilia,et al.  Protein Adaptations in Archaeal Extremophiles , 2013, Archaea.

[66]  C. Gostinčar,et al.  Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent , 2013, BMC Genomics.

[67]  A. Boudabous,et al.  Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. , 2013, International journal of systematic and evolutionary microbiology.

[68]  K. Yamasato,et al.  Alkalibacterium gilvum sp. nov., slightly halophilic and alkaliphilic lactic acid bacterium isolated from soft and semi-hard cheeses. , 2013, International journal of systematic and evolutionary microbiology.

[69]  S. A. Fazeli,et al.  Limimonas halophila gen. nov., sp. nov., an extremely halophilic bacterium in the family Rhodospirillaceae. , 2013, International journal of systematic and evolutionary microbiology.

[70]  J. C. Schmitz,et al.  Identification of Streptomyces sp. nov. WH26 producing cytotoxic compounds isolated from marine solar saltern in China , 2013, World journal of microbiology & biotechnology.

[71]  H. Karbalaei-Heidari,et al.  A novel low molecular weight extracellular protease from a moderately halophilic bacterium Salinivibrio sp. strain MS-7: production and biochemical properties , 2012 .

[72]  Cristóbal N. Aguilar,et al.  Halophilic hydrolases as a new tool for the biotechnological industries. , 2012, Journal of the science of food and agriculture.

[73]  S. Acharya,et al.  Bioprospecting thermophiles for cellulase production: a review , 2012, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[74]  P. Agarwal,et al.  Improved Salinity Tolerance of Arachishypogaea (L.) by the Interaction of Halotolerant Plant-Growth-Promoting Rhizobacteria , 2012, Journal of Plant Growth Regulation.

[75]  T. McGenity,et al.  Marine crude-oil biodegradation: a central role for interspecies interactions , 2012, Aquatic biosystems.

[76]  K. Poole Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. , 2012, Trends in microbiology.

[77]  P. Campo,et al.  Aerobic biodegradation of amines in industrial saline wastewaters. , 2011, Chemosphere.

[78]  Rishi Gupta,et al.  Microbial Cellulases and Their Industrial Applications , 2011, Enzyme research.

[79]  M. Asghar,et al.  Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. , 2011, Canadian journal of microbiology.

[80]  W. Tzou,et al.  Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1 , 2011 .

[81]  F. Kolisis,et al.  An investigation into the removal of starch paste adhesives from historical textiles by using the enzyme -amylase , 2011 .

[82]  G. Reddy,et al.  Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress , 2011 .

[83]  Shukun Tang,et al.  Bacillus hunanensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil , 2011, Antonie van Leeuwenhoek.

[84]  B. Lugtenberg,et al.  Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils , 2011, Biology and Fertility of Soils.

[85]  V. Müller,et al.  Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. , 2010, Research in microbiology.

[86]  B. Patel,et al.  Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring. , 2010, International journal of systematic and evolutionary microbiology.

[87]  M. E. Setati,et al.  Diversity and industrial potential of hydrolase- producing halophilic/halotolerant eubacteria , 2010 .

[88]  M. Saraf,et al.  Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants , 2010 .

[89]  A. Bano,et al.  Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. , 2009 .

[90]  Jesús Caballero-Mellado,et al.  Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. , 2009, FEMS microbiology letters.

[91]  Xiu-Lan Chen,et al.  Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241 , 2009, Applied Microbiology and Biotechnology.

[92]  Yasushi Yamamoto,et al.  Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand. , 2009, International journal of systematic and evolutionary microbiology.

[93]  A. Roldán,et al.  Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress , 2009 .

[94]  B. Ollivier,et al.  Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia , 2009, Extremophiles.

[95]  M. Vidyasagar,et al.  Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101 , 2009 .

[96]  N. Vasudevan,et al.  Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. , 2009, Marine pollution bulletin.

[97]  K. Khajeh,et al.  Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA‐2 , 2008, Journal of basic microbiology.

[98]  Nishant A. Dafale,et al.  Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium--biostimulation and halo tolerance. , 2008, Bioresource technology.

[99]  Hailiang Dong,et al.  Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. , 2007, Environmental microbiology.

[100]  Ji-ti Zhou,et al.  Biodecolorization of Azo Dye Acid Red B under High Salinity Condition , 2007, Bulletin of environmental contamination and toxicology.

[101]  N. Gunde-Cimerman,et al.  Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii , 2006 .

[102]  D. Mitchell,et al.  Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. , 2006 .

[103]  F. Villani,et al.  Characterization of halophilic Archaea isolated from different hypersaline ecosystems , 2006, Annals of Microbiology.

[104]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[105]  J. Soppa From genomes to function: haloarchaea as model organisms. , 2006, Microbiology.

[106]  A. Ventosa,et al.  Catabolic versatility of aromatic compound-degrading halophilic bacteria. , 2005, FEMS microbiology ecology.

[107]  M. Roberts Organic compatible solutes of halotolerant and halophilic microorganisms , 2005, Saline Systems.

[108]  H. R. Catchpole,et al.  A microprobe analysis of inorganic elements in Halobacterium salinarum , 2005, Cell biology international.

[109]  Chan‐Wha Kim,et al.  Proteomics of Halophilic archaea. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[110]  R. Usami,et al.  Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1 , 2005, Extremophiles.

[111]  B. Glick,et al.  Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. , 2004, Plant physiology and biochemistry : PPB.

[112]  R. G. Lloyd,et al.  Development of Additional Selectable Markers for the Halophilic Archaeon Haloferax volcanii Based on the leuB and trpA Genes , 2004, Applied and Environmental Microbiology.

[113]  Q. Beg,et al.  Microbial xylanases and their industrial applications: a review , 2001, Applied Microbiology and Biotechnology.

[114]  K. Yoshida,et al.  Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. , 2000, Plant physiology.

[115]  Aharon Oren,et al.  Bioenergetic Aspects of Halophilism , 1999, Microbiology and Molecular Biology Reviews.

[116]  Antonio Ventosa,et al.  Biology of Moderately Halophilic Aerobic Bacteria , 1998, Microbiology and Molecular Biology Reviews.

[117]  P. Flores,et al.  Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants. , 1997, Microbiologia.

[118]  A. Oren The ecology of the extremely halophilic archaea , 1994 .

[119]  M. Kates Biology of halophilic bacteria, Part II , 1993, Experientia.

[120]  P. Franzmann,et al.  Biology and biotechnological potential of halotolerant bacteria from Antarctic saline lakes , 1993, Experientia.

[121]  P. Bonin,et al.  Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. , 1992, International journal of systematic bacteriology.

[122]  S. Belyaev,et al.  Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria , 1992 .

[123]  G. Mille,et al.  Biodegradation of hydrocarbons by an extremely halophilic archaebacterium , 1990 .

[124]  A. Strøm,et al.  Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose , 1987, Archives of Microbiology.

[125]  A. Strongin,et al.  Purification and properties of serine protease from Halobacterium halobium , 1983, Journal of bacteriology.

[126]  D. M. Ward,et al.  Hydrocarbon Biodegradation in Hypersaline Environments , 1978, Applied and environmental microbiology.

[127]  M. Amoozegar,et al.  Halophiles in bioremediation of petroleum contaminants: challenges and prospects , 2021 .

[128]  A. Ugo,et al.  Microbial Lipases: A Prospect for Biotechnological Industrial Catalysis for Green Products: A Review , 2017 .

[129]  D. Singh,et al.  Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. , 2015, Plant biology.

[130]  M. Amoozegar,et al.  Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. , 2013, International journal of systematic and evolutionary microbiology.

[131]  Moumita Karmakar,et al.  Current Trends in Research and Application of Microbial Cellulases , 2011 .

[132]  Pooja Shivanand,et al.  Halophilic bacteria and their compatible solutes – osmoregulation and potential applications , 2011 .

[133]  R. Gokulakrishnan,et al.  BIODEGRADATION OF PHENOLIC COMPOUNDS BY USINGHALOTOLERANT MICROBES , 2011 .

[134]  C. Vorgias,et al.  Extreme environments as a resource for microorganisms and novel biocatalysts. , 2005, Advances in biochemical engineering/biotechnology.

[135]  G. Feller,et al.  Xylanases, xylanase families and extremophilic xylanases. , 2005, FEMS microbiology reviews.

[136]  A. Oren,et al.  Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications , 2002, Journal of Industrial Microbiology and Biotechnology.

[137]  R. Vreeland Mechanisms of halotolerance in microorganisms. , 1987, Critical reviews in microbiology.

[138]  D. Ranwell,et al.  Ecology of Salt Marshes and Sand Dunes , 1972 .