The analysis of PMHSS-multigrid methods for elliptic problems with smooth complex coefficients
暂无分享,去创建一个
[1] Gene H. Golub,et al. Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..
[2] Gene H. Golub,et al. Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..
[3] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[4] C. Douglas. Multi-Grid Algorithms with Applications to Elliptic Boundary Value Problems , 1984 .
[5] Hamilton-Jacobi Equations,et al. Multigrid Methods for , 2011 .
[6] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[7] Susanne C. Brenner,et al. Convergence of the multigrid V-cycle algorithm for second-order boundary value problems without full elliptic regularity , 2002, Math. Comput..
[8] Jinchao Xu,et al. The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems , 1988 .
[9] James H. Bramble,et al. The analysis of multigrid methods , 2000 .
[10] Zhong-Zhi Bai,et al. Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..
[11] Fang Chen,et al. Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.
[12] Jan Mandel,et al. Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step , 1986 .
[13] Joseph E. Pasciak,et al. THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS , 1992 .
[14] Randolph E. Bank,et al. A Comparison of Two Multilevel Iterative Methods for Nonsymmetric and Indefinite Elliptic Finite Element Equations , 1981 .
[15] T. Pagel. HUMBOLDT-UNIVERSITY OF BERLIN Faculty of Agriculture and Horticulture , 2009 .
[16] Fang Chen,et al. On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.
[17] J. Pasciak,et al. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems , 1994 .
[18] Junping Wang. Convergence analysis of multigrid algorithms for nonselfadjoint and indefinite elliptic problems , 1993 .
[19] H. Yserentant. Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.
[20] Michele Benzi,et al. New multigrid smoothers for the Oseen problem , 2010, Numer. Linear Algebra Appl..
[21] Xuejun Xu,et al. Local Multilevel Methods for Adaptive Finite Element Methods for Nonsymmetric and Indefinite Elliptic Boundary Value Problems , 2010, SIAM J. Numer. Anal..
[22] Zhengda Huang,et al. Convergence analysis of HSS-multigrid methods for second-order nonselfadjoint elliptic problems , 2013 .
[23] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[24] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[25] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[26] J. Pasciak,et al. Multigrid Convergence for Second Order Elliptic Problems with Smooth Complex Coefficients , 2008 .
[27] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..