Weighted nonbinary repeat-accumulate codes

Repeat-accumulate (RA) codes are random-like codes having remarkably good performance over an additive white Gaussian noise (AWGN) channel, like turbo and low-density parity-check (LDPC) codes. In this correspondence, we introduce an ensemble of random codes called "weighted nonbinary repeat-accumulate (WNRA) codes" whose encoder consists of a nonbinary repeater, a weighter, a pseudorandom symbol interleaver, and an accumulator over a finite field GF(q). They can be decoded in a simple way by applying the sum-product algorithm to their factor graphs over GF(q). Simulation results show that WNRA codes with proper weighting values over GF(4) or GF(8) are superior to binary RA codes on AWGN channels.

[1]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[2]  D. Mackay,et al.  Low-Density Parity Check Codes over , 1998 .

[3]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[4]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[5]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[6]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[7]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[8]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[9]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[10]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[11]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[12]  Matthew C. Davey,et al.  Error-Correction using Low Density Parity Check Codes , 1999 .

[13]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[14]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.