Computational Complexity of Tensor Nuclear Norm

The main result of this paper shows that the weak membership problem in the unit ball of a given norm is NP-hard if and only if the weak membership problem in the unit ball of the dual norm is NP-hard. Equivalently, the approximation of a given norm is polynomial time if and only if the approximation of the dual norm is polynomial time. Using the NP-hardness of the approximation of the spectral norm of tensors we show that the approximation of the nuclear norm is NP-hard. We relate our results to bipartite separable states in quantum mechanics.

[1]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[2]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[3]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[4]  S. Banach Über homogene Polynome in ($L^{2}$) , 1938 .

[5]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[6]  Shmuel Friedland,et al.  Variation of tensor powers and spectrat , 1982 .

[7]  Domingo García,et al.  On Norm Attaining Polynomials , 2003 .

[8]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[9]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[10]  A. Defant,et al.  Tensor Norms and Operator Ideals , 2011 .

[11]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[12]  R. Schatten,et al.  A theory of cross-spaces , 1950 .

[13]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[14]  T. TerzioĞglu,et al.  On Schwartz spaces , 1969 .

[15]  Yau-chuen Wong,et al.  Schwartz spaces, nuclear spaces, and tensor products , 1979 .

[16]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[17]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[18]  S. Friedland Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.

[19]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.