Evolutionary synthesis of low-sensitivity equalizers using adjacency matrix representation

An evolutionary synthesis method to design low-sensitivity IIR filters with linear phase in the passband is presented. The method uses a chromosome coding scheme based on the graph adjacency matrix. It is shown that the proposed chromosome representation enables to easily verify invalid individuals during the evolutionary process. The efficiency of the proposed algorithm is tested in the synthesis of a fourth-order linear phase elliptic lowpass digital filter.

[1]  Chikkannan Eswaran,et al.  A pole-sensitivity based method for the design of digital filters for error-spectrum shaping , 1989 .

[2]  D. H. Horrocks,et al.  A genetic algorithm for the design of finite word length arbitrary response cascaded IIR digital filters , 1995 .

[3]  T. Bose,et al.  Design of 2-D multiplierless IIR filters using the genetic algorithm , 2002 .

[4]  Gunnar Tufte,et al.  Evolving an adaptive digital filter , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[5]  Kim-Fung Man,et al.  Parallel Genetic-Based Hybrid Pattern Matching Algorithm for Isolated Word Recognition , 1998, Int. J. Pattern Recognit. Artif. Intell..

[6]  C. Barnes On the design of optimal state-space realizations of second-order digital filters , 1984 .

[7]  M.N.S. Swamy,et al.  Design of two-dimensional recursive filters using genetic algorithms , 2003 .

[8]  Andreas Antoniou,et al.  Low-sensitivity digital-filter structures which are amenable to error-spectrum shaping , 1985 .

[9]  Murat Askar,et al.  Incremental design of high complexity FIR filters by genetic algorithms , 1999, ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359).

[10]  T. Inukai A unified approach to optimal recursive digital filter design , 1980 .

[11]  J. Miller Digital filter design at gate-level using evolutionary algorithms , 1999 .

[12]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[13]  A. Deczky Synthesis of recursive digital filters using the minimum p-error criterion , 1972 .

[14]  Tatiana Kalganova,et al.  Constrained and Unconstrained evolution of " LCR" low-pass filters with oscillating length representation , 2006, IEEE Congress on Evolutionary Computation.

[15]  A. Antoniou Digital Signal Processing: Signals, Systems, and Filters , 2005 .

[16]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[17]  Roberto Rossi,et al.  Digital filter design through simulated evolution , 2001 .

[18]  Masayuki Kawamata,et al.  Synthesis of low-sensitivity second-order digital filters using genetic programming with automatically defined functions , 2000, IEEE Signal Processing Letters.

[19]  Ricardo Salem Zebulum,et al.  Evolutionary Electronics , 2001 .

[20]  Xin Yao,et al.  Digital filter design using multiple pareto fronts , 2004, Soft Comput..

[21]  Tatiana Kalganova,et al.  Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[22]  Ramesh C. Agarwal,et al.  New recursive digital filter structures having very low sensitivity and roundoff noise , 1975 .

[23]  Kim-Fung Man,et al.  Design and optimization of IIR filter structure using hierarchical genetic algorithms , 1998, IEEE Trans. Ind. Electron..

[24]  M. Ahmadi,et al.  Design of 1-D FIR filters with genetic algorithms , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[25]  M. Kawamata,et al.  Evolutionary synthesis of digital filter structures using genetic programming , 2003, IEEE Trans. Circuits Syst. II Express Briefs.