Rise and fall of the X-ray flash 080330: An off-axis jet?

Context. X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with a peak energy of the time-integrated νFν spectrum, Ep, typically below 30 keV, whereas classical GRBs have Ep of a few hundreds of keV. Apart from Ep and the systematically lower luminosity, the properties of XRFs, such as their duration or spectral indices, are typical of the classical GRBs. Yet, the nature of XRFs and their differences from GRBs are not understood. In addition, there is no consensus on the interpretation of the shallow decay phase observed in most X-ray afterglows of both XRFs and GRBs. Aims. We examine in detail the case of XRF 080330 discovered by Swift at redshift 1.51. This burst is representative of the XRF class and exhibits an X-ray shallow decay. The rich broadband (from NIR to UV) photometric data set we collected during this phase makes it an ideal candidate for testing the off-axis jet interpretation proposed to explain both the softness of XRFs and the shallow decay phase. Methods. We present prompt γ-ray, early and late NIR/visible/UV and X-ray observations of the XRF 080330. We derive a spectral energy distribution from NIR to X-ray bands across the shallow/plateau phase and describe the temporal evolution of the multiwavelength afterglow within the context of the standard afterglow model. Results. The multiwavelength evolution of the afterglow is achromatic from ∼10 2 st o∼8 × 10 4 s. The energy spectrum from NIR to X-ray is reproduced well by a simple power-law, Fν ∝ ν −βox , with βox = 0.79 ± 0.01 and negligible rest-frame dust extinction. The light curve can be modelled by either a piecewise power-law or the combination of a smoothly broken power law with an initial rise up to ∼600 s, a plateau lasting up to ∼2 ks, followed by a gradual steepening to a power-law decay index of ∼2 until 82 ks. At this point, a bump appears to be modelled well with a second component, while the corresponding optical energy spectrum, Fν ∝ ν −βo , reddens by Δβo = 0.26 ± 0.06. Conclusions. A single-component jet viewed off-axis can explain the light curve of XRF 080330, the late-time reddening being due to the reverse shock of an energy injection episode and its being an XRF. Other possibilities, such as the optical rise marking the pre-deceleration of the fireball within a wind environment, cannot be excluded definitely, but appear to be contrived. We exclude the possibility of a dust decreasing column density being swept up by the fireball as explaining the rise of the afterglow.

[1]  C. Guidorzi,et al.  Testing the Ep,i–Lp,iso–T0.45 correlation on a BeppoSAX and Swift sample of gamma-ray bursts , 2008, 0802.0471.

[2]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[3]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[4]  E. Rol,et al.  Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. II. The Distribution of p and Structure of the Circumburst Medium , 2007, 0704.3718.

[5]  Ryo Yamazaki,et al.  X-Ray Flashes from Off-Axis Gamma-Ray Bursts , 2002 .

[6]  F. Daigne,et al.  Can the early X-ray afterglow of gamma-ray bursts be explained by a contribution from the reverse shock? , 2007, astro-ph/0701204.

[7]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[8]  J. Heise,et al.  X-Ray Flashes and X-Ray Rich Gamma Ray Bursts , 2001 .

[9]  Kevin Krisciunas,et al.  The Recognition of Unusual Objects in the Sloan Digital Sky Survey Color System , 1998, astro-ph/9808093.

[10]  P. Giommi,et al.  An unexpectedly rapid decline in the X-ray afterglow emission of long γ-ray bursts , 2005, Nature.

[11]  D. Eichler,et al.  An Interpretation of the hνpeak-Eiso Correlation for Gamma-Ray Bursts , 2004, astro-ph/0405014.

[12]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[13]  Jay D. Salmonson Perspective on Afterglows: Numerically Computed Views, Light Curves, and the Analysis of Homogeneous and Structured Jets with Lateral Expansion , 2003 .

[14]  T. Q. Donaghy The importance of off-jet relativistic kinematics in gamma-ray burst jet models , 2006 .

[15]  Evert Rol,et al.  A Deep Search with HST for Late Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427 , 2004 .

[16]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[17]  Charles D. Dermer,et al.  Beaming, Baryon Loading, and the Synchrotron Self-Compton Component in Gamma-Ray Bursts , 2000 .

[18]  Jonathan Granot Afterglow Light Curves from Impulsive Relativistic Jets with an Unconventional Structure , 2005 .

[19]  C. Guidorzi,et al.  A review of early-time optical follow-ups with 2 m robotic telescopes , 2006 .

[20]  E. Mazets,et al.  Broadband observations of the naked-eye γ-ray burst GRB 080319B , 2008, Nature.

[21]  Tsvi Piran,et al.  The Variable Light Curve of GRB 030329: The Case for Refreshed Shocks , 2003 .

[22]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[23]  A. Panaitescu,et al.  A unified treatment of the gamma-ray burst 021211 and its afterglow , 2003 .

[24]  Tsvi Piran,et al.  Predictions for the Very Early Afterglow and the Optical Flash , 1999, astro-ph/9901338.

[25]  Jonathan Granot,et al.  The Case for Anisotropic Afterglow Efficiency within Gamma-Ray Burst Jets , 2005, astro-ph/0509857.

[26]  J. G. Jernigan,et al.  High-Energy Observations of XRF 030723: Evidence for an Off-Axis Gamma-Ray Burst? , 2004, astro-ph/0408453.

[27]  Ehud Nakar,et al.  Smooth light curves from a bumpy ride: relativistic blast wave encounters a density jump , 2007 .

[28]  M. Nardini,et al.  A unifying view of gamma-ray burst afterglows , 2008, 0811.1038.

[29]  Yi-Zhong Fan,et al.  GRB 060418 and 060607A: the medium surrounding the progenitor and the weak reverse shock emission , 2007 .

[30]  P. Kumar,et al.  Off-Axis Afterglow Emission from Jetted Gamma-Ray Bursts , 2002 .

[31]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[32]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[33]  D. Burrows,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[34]  Gregory Y. Prigozhin,et al.  Global Characteristics of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by HETE-2 , 2005 .

[35]  S. Covino,et al.  The afterglow of GRB 021004: surfing on density waves , 2002, astro-ph/0210333.

[36]  Bing Zhang,et al.  Gamma-Ray Burst Early Optical Afterglows: Implications for the Initial Lorentz Factor and the Central Engine , 2003 .

[37]  Giancarlo Cusumano,et al.  Swift XRT Observations of the Afterglow of XRF 050416A , 2007 .

[38]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[39]  D. N. Burrows,et al.  Early afterglow detection in the Swift observations of GRB 050801 , 2007 .

[40]  C. Guidorzi,et al.  The Early Multicolor Afterglow of GRB 050502a: Possible Evidence for a Uniform Medium with Density Clumps , 2005 .

[41]  F. Frontera Gamma Ray Bursts in the Afterglow Era , 2003 .

[42]  Jesper Sollerman,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[43]  M. Feroci,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[44]  E. Berger,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.

[45]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[46]  C. B. Markwardt,et al.  Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift , 2008, 0801.4319.

[47]  A. Panaitescu,et al.  Afterglow Emission from Naked Gamma-Ray Bursts , 2000, astro-ph/0006317.

[48]  E. Rol,et al.  On the Afterglow of the X-Ray Flash of 2003 July 23: Photometric Evidence for an Off-Axis Gamma-Ray Burst with an Associated Supernova?* , 2004 .

[49]  J. Granot,et al.  Realistic analytic model for the prompt and high‐latitude emission in GRBs , 2008, 0812.4677.

[50]  M. Feroci,et al.  Prompt and afterglow X-ray emission from the X-Ray Flash of 2002 April 27 , 2004, astro-ph/0407166.

[51]  T. Sakamoto,et al.  Epeak ESTIMATOR FOR GAMMA-RAY BURSTS OBSERVED BY THE SWIFT BURST ALERT TELESCOPE , 2008, 0811.3401.

[52]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[53]  S. B. Pandey,et al.  The complex light curve of the afterglow of GRB 071010A , 2008, 0804.4367.

[54]  N. Gehrels,et al.  Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine , 2007, astro-ph/0702220.

[55]  J. G. Jernigan,et al.  Spectral analysis of 35 GRBs/XRFs observed with HETE-2/FREGATE , 2002 .

[56]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[57]  Tsvi Piran,et al.  Implications of the early X-ray afterglow light curves of Swift gamma-ray bursts , 2006, astro-ph/0601056.

[58]  Andrei M. Beloborodov,et al.  On the Mechanism of Gamma-Ray Burst Afterglows , 2007 .

[59]  Ryo Yamazaki,et al.  Efficiency Crisis of Swift Gamma-Ray Bursts with Shallow X-ray Afterglows : Prior Activity or Time-Dependent Microphysics? , 2006 .

[60]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[61]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[62]  Tsvi Piran,et al.  Astrophysics: refreshed shocks from a γ-ray burst , 2003, Nature.

[63]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[64]  M. Boër,et al.  Robotic Observations of the Sky with TAROT: 2004–2007 , 2008 .

[65]  Bing Zhang,et al.  The Onset of Gamma-Ray Burst Afterglow , 2007 .

[66]  Jonathan Granot,et al.  Distribution of gamma-ray burst ejecta energy with Lorentz factor , 2006 .

[67]  Gudlaugur Johannesson,et al.  Energy Injection in Gamma-Ray Burst Afterglow Models , 2006 .

[68]  E.,et al.  The REM telescope: detecting the near infra-red counterparts of Gamma-Ray Bursts and the prompt behavior of their optical continuum , 2001, astro-ph/0203034.

[69]  P. Meszaros Gamma-ray bursts , 1998 .

[70]  A. Monfardini,et al.  Multiwavelength Analysis of the Intriguing GRB 061126: The Reverse Shock Scenario and Magnetization , 2008, 0804.1727.

[71]  G. Ghirlanda,et al.  "Late prompt" emission in Gamma Ray Bursts? , 2007 .

[72]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[73]  W. T. Vestrand,et al.  Taxonomy of gamma‐ray burst optical light curves: identification of a salient class of early afterglows , 2008, 0803.1872.

[74]  Sergei Nayakshin,et al.  Expanding relativistic shells and gamma-ray burst temporal structure , 1996 .

[75]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[76]  J. G. Jernigan,et al.  Global characteristics of X-ray flashes and X-ray rich GRBs observed by HETE-2 , 2004, astro-ph/0409128.

[77]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[78]  P. Giommi,et al.  X-ray flare in XRF 050406: evidence for prolonged engine activity , 2006 .

[79]  C. Guidorzi,et al.  On the consistency of peculiar GRBs 060218 and 060614 with the Ep,i - Eiso correlation , 2006 .

[80]  P. Conconi,et al.  REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination , 2006, astro-ph/0612607.

[81]  Alessandro Monfardini,et al.  Early Optical Polarization of a Gamma-Ray Burst Afterglow , 2007, Science.

[82]  T. Mineo,et al.  The multiwavelength afterglow of GRB 050721: a puzzling rebrightening seen in the optical but not in the X-ray , 2006 .

[83]  M. Feroci,et al.  Prompt and Afterglow Emission from the X-Ray-Rich GRB 981226 Observed with BeppoSAX , 2000, astro-ph/0002527.

[84]  L. Piro,et al.  Properties of X- Ray Rich Gamma Ray Bursts and X-Ray Flashes , 2005, astro-ph/0511272.

[85]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[86]  Lorenzo Amati,et al.  The Ep,i–Eiso correlation in gamma-ray bursts: updated observational status, re-analysis and main implications , 2006, astro-ph/0601553.

[87]  Heather Ting Ma,et al.  Rebrightening of XRF 030723: Further evidence for a two-component jet in a gamma-ray burst , 2003, astro-ph/0309360.

[88]  R. H. McNaught,et al.  The Early Optical Afterglow of GRB 030418 and Progenitor Mass Loss , 2003, astro-ph/0310501.

[89]  D. Fugazza,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[90]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[91]  A. Gal-Yam,et al.  Early optical emission from the γ-ray burst of 4 October 2002 , 2003, Nature.

[92]  J. Hakkila,et al.  Long-Lag, Wide-Pulse Gamma-Ray Bursts , 2005 .

[93]  W. S. Paciesas,et al.  The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data , 2000 .

[94]  Goro Sato,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004 .

[95]  C. Guidorzi,et al.  The Automatic Real‐Time Gamma‐Ray Burst Pipeline of the 2 m Liverpool Telescope , 2005, astro-ph/0511032.

[96]  Yuki Kaneko,et al.  The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts , 2006, astro-ph/0601188.

[97]  Sergio Campana,et al.  Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data , 2006 .

[98]  P. A. Mazzali,et al.  Supernova Light-Curve Models for the Bump in the Optical Counterpart of X-Ray Flash 030723 , 2004, astro-ph/0405151.

[99]  Tsvi Piran,et al.  Some Observational Consequences of Gamma-Ray Burst Shock Models , 1999, astro-ph/9906002.

[100]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[101]  Jonathan Granot,et al.  Two-Component Jet Models of Gamma-Ray Burst Sources , 2005 .

[102]  Z. G. Dai,et al.  Behavior of X-Ray Dust Scattering and Implications for X-Ray Afterglows of Gamma-Ray Bursts , 2007 .

[103]  Charles D. Dermer Curvature Effects in Gamma-Ray Burst Colliding Shells , 2004 .

[104]  P. Giommi,et al.  The Swift X-Ray Telescope , 1999 .

[105]  Ryo Yamazaki,et al.  PRIOR EMISSION MODEL FOR X-RAY PLATEAU PHASE OF GAMMA-RAY BURST AFTERGLOWS , 2008, 0810.1089.

[106]  Enrico Ramirez-Ruiz,et al.  Afterglow Observations Shed New Light on the Nature of X-Ray Flashes , 2005, astro-ph/0502300.